Search Thermo Fisher Scientific
Adeno-associated viruses (AAVs) comprise an area of rapidly growing interest due to their ability to act as a gene delivery vehicle in novel gene therapy strategies and vaccine development. Peptide mapping is a common technique in the biopharmaceutical industry to confirm the correct sequence, product purity, post-translational modifications (PTMs), and stability. However, conventional peptide mapping is time-consuming and has proven difficult to reproduce with viral capsids because of their high structural stability and the suboptimal localization of trypsin cleavage sites in the AAV protein sequences. In this study, we present an optimized peptide mapping-based workflow that provides thorough characterization within 1 day. This workflow is also highly reproducible due to its simplicity having very few steps and is easy to perform proteolytic digestion utilizing thermally stable pepsin, which is active at 70 °C in acidic conditions. The acidic conditions of the peptic digestions drive viral capsid denaturation and improve cleavage site accessibility. We characterized the efficiency and ease of digestion through peptide mapping of the AAV2 viral capsid protein. Using nanoflow liquid chromatography coupled with tandem mass spectrometry, we achieved 100% sequence coverage of the low-abundance VP1 capsid protein with a digestion process taking only 10 min to prepare and 45 min to complete the digestion.
序列覆盖挑战。
smart digest pepsin kit(胃蛋白酶试剂盒),自带缓冲液;耐高温酶,活性高。
操作简便;酶切更好,得到100%(文章再发一下)序列覆盖度。
序列覆盖-蛋白的表征-关键肽段-QC方向,加快探索方法的周期和推进关键进程。(大分子AE)