The increasing complexity of semiconductor device structures, along with the shrinking of structural dimensions, means that designing next-generation devices is more challenging and time-consuming than ever before. This, coupled with the fact that the number of technology and design options available is increasing, means a lower probability that any particular design will be commercially successful. As a result, device manufacturers need reliable tools for pathfinding that reduce the number of viable options available and help them implement solutions faster.

The complexity of considering all the chip, package, and system integration options that exist has made implementation an intimidating task. As a result, continuing evolution of the most advanced pathfinding capability has become a requirement in efficient semiconductor device design. Adding to this level of complexity are structures with multifaceted 3D architectures. Isolating defects or resolving material interfaces in a focused-ion-beam (FIB) cut structural cross-section requires highly precise preparation and subsequent scanning electron microscopy (SEM) or scanning transmission electron microscopy (STEM) imaging. Precision FIB editing tools can also perform microsurgery and nanoprototyping of new circuit designs. Finally, due to limited floorspace and budgets, labs are pushing to have multiple analysis options in a single system to get the most comprehensive data in the shortest possible time.

Thermo Fisher Scientific provides a full suite of analytical instruments that enable advanced R&D on innovative logic, memory, power and display device technologies. We offer the most advanced capability to perform high-end atomic-level research and prototyping, using STEM and FIB microscopy.

Semiconductor pathfinding and device development workflow examples

 

 

Style Sheet for Komodo Tabs

Techniques

TEM Metrology

Advanced and automated TEM metrology routines deliver significantly greater precision than manual methods. This allows users to generate large amounts of statistically relevant data, with sub-angstrom-level specificity, that is free of operator bias.

Learn more ›

Semiconductor TEM Imaging and Analysis

Thermo Scientific transmission electron microscopes offer high-resolution imaging and analysis of semiconductor devices, enabling manufacturers to calibrate toolsets, diagnose failure mechanisms, and optimize overall process yields.

Learn more ›

Sample Preparation of Semiconductor Devices

Thermo Scientific DualBeam systems provide accurate TEM sample preparation for atomic-scale analysis of semiconductor devices. Automation and advanced machine learning technologies produce high-quality samples, at the correct location, and a low cost per sample.

Learn more ›

Semiconductor Analysis and Imaging

Thermo Fisher Scientific offers scanning electron microscopes for every function of a semiconductor lab, from general imaging tasks to advanced failure analysis techniques requiring precise voltage-contrast measurements.

Learn more ›

Optical Fault Isolation

Increasingly complex designs complicate fault and defect isolation in semiconductor manufacturing. Optical fault isolation techniques allow you to analyze the performance of electrically active devices to locate critical defects that cause device failure.

Learn more ›

Thermal Fault Isolation

Uneven distribution of local power dissipation can cause large, localized increases in temperature, leading to device failure. We offer unique solutions for thermal fault isolation with high-sensitivity lock-in infrared thermography (LIT).

Learn more ›

Circuit Edit

Advanced, dedicated circuit edit and nanoprototyping solutions, which combine novel gas-delivery systems with a broad portfolio of chemistries and focused ion beam technology, offer unparalleled control and precision for semiconductor device development.

Learn more ›

Nanoprobing

As device complexity increases, so does the number of places defects have to hide. Nanoprobing provides the precise localization of electrical faults, which is critical for an effective transmission electron microscopy failure analysis workflow.

Learn more ›

Semiconductor Laser Ablation

Laser ablation provides high-throughput milling of semiconductor devices for imaging and analysis with electron microscopy, while still preserving sample integrity. Access large-volume 3D data and optimize milling conditions to best suit your sample type.

Learn more ›

APT Sample Preparation

Atom probe tomography (APT) provides atomic-resolution 3D compositional analysis of materials. Focused ion beam (FIB) microscopy is an essential technique for high-quality, orientation, and site-specific sample preparation for APT characterization.

Learn more ›

Device Delayering

Shrinking feature size, along with advanced design and architecture, results in increasingly challenging failure analysis for semiconductors. Damage-free delayering of devices is a critical technique for the detection of buried electrical faults and failures.

Learn more ›

TEM Metrology

Advanced and automated TEM metrology routines deliver significantly greater precision than manual methods. This allows users to generate large amounts of statistically relevant data, with sub-angstrom-level specificity, that is free of operator bias.

Learn more ›

Semiconductor TEM Imaging and Analysis

Thermo Scientific transmission electron microscopes offer high-resolution imaging and analysis of semiconductor devices, enabling manufacturers to calibrate toolsets, diagnose failure mechanisms, and optimize overall process yields.

Learn more ›

Sample Preparation of Semiconductor Devices

Thermo Scientific DualBeam systems provide accurate TEM sample preparation for atomic-scale analysis of semiconductor devices. Automation and advanced machine learning technologies produce high-quality samples, at the correct location, and a low cost per sample.

Learn more ›

Semiconductor Analysis and Imaging

Thermo Fisher Scientific offers scanning electron microscopes for every function of a semiconductor lab, from general imaging tasks to advanced failure analysis techniques requiring precise voltage-contrast measurements.

Learn more ›

Optical Fault Isolation

Increasingly complex designs complicate fault and defect isolation in semiconductor manufacturing. Optical fault isolation techniques allow you to analyze the performance of electrically active devices to locate critical defects that cause device failure.

Learn more ›

Thermal Fault Isolation

Uneven distribution of local power dissipation can cause large, localized increases in temperature, leading to device failure. We offer unique solutions for thermal fault isolation with high-sensitivity lock-in infrared thermography (LIT).

Learn more ›

Circuit Edit

Advanced, dedicated circuit edit and nanoprototyping solutions, which combine novel gas-delivery systems with a broad portfolio of chemistries and focused ion beam technology, offer unparalleled control and precision for semiconductor device development.

Learn more ›

Nanoprobing

As device complexity increases, so does the number of places defects have to hide. Nanoprobing provides the precise localization of electrical faults, which is critical for an effective transmission electron microscopy failure analysis workflow.

Learn more ›

Semiconductor Laser Ablation

Laser ablation provides high-throughput milling of semiconductor devices for imaging and analysis with electron microscopy, while still preserving sample integrity. Access large-volume 3D data and optimize milling conditions to best suit your sample type.

Learn more ›

APT Sample Preparation

Atom probe tomography (APT) provides atomic-resolution 3D compositional analysis of materials. Focused ion beam (FIB) microscopy is an essential technique for high-quality, orientation, and site-specific sample preparation for APT characterization.

Learn more ›

Device Delayering

Shrinking feature size, along with advanced design and architecture, results in increasingly challenging failure analysis for semiconductors. Damage-free delayering of devices is a critical technique for the detection of buried electrical faults and failures.

Learn more ›

Samples


Semiconductor Materials and Device Characterization

As semiconductor devices shrink and become more complex, new designs and structures are needed. High-productivity 3D analysis workflows can shorten device development time, maximize yield, and ensure that devices meet the future needs of the industry.

Learn more ›


Products

Style Sheet for Instrument Cards Original

Spectra Ultra

  • New imaging and spectroscopy capabilities on the most beam sensitive materials
  • A leap forward in EDX detection with Ultra-X
  • Column designed to maintain sample integrity.

Helios 5 PFIB DualBeam

  • Gallium-free STEM and TEM sample preparation
  • Multi-modal subsurface and 3D information
  • Next-generation 2.5 μA xenon plasma FIB column

Helios 5 HX/Helios 5 UX/Helios 5 FX DualBeam

  • Fully automated, high-quality, ultra-thin TEM sample preparation
  • High throughput, high resolution subsurface and 3D characterization
  • Rapid nanoprototyping capabilities

Talos F200E TEM

  • High-quality (S)TEM imaging of semiconductor and microelectronic devices
  • Precise, high-speed chemical characterization with EDS
  • Dedicated semiconductor-related applications

Metrios AX TEM

  • Automation options to support quality, consistency, metrology, and reduced OPEX
  • Leverages machine learning for superior autofunctions and feature recognition
  • Workflows for both in-situ and ex-situ lamella preparation
Thermo Scientific Scios 2 plasma focused ion beam scanning electron microscope (DualBeam)

Scios 2 DualBeam

  • Full support of magnetic and non-conductive samples
  • High throughput subsurface and 3D characterization
  • Advanced ease of use and automation capabilities

ExSolve WTP DualBeam

  • Can prepare site-specific, 20 nm thick lamellae on whole wafers up to 300 mm in diameter
  • Addresses needs requiring automated, high-throughput sampling at advanced technology nodes
Thermo Scientific Verios 5 XHR scanning electron microscope (SEM)

Verios 5 XHR SEM

  • Monochromated SEM for sub-nanometer resolution over the full 1 keV to 30 keV energy range
  • Easy access to beam landing energies as low as 20 eV
  • Excellent stability with piezo stage as standard
Thermo Scientific Quattro E scanning electron microscope (SEM)

Quattro ESEM

  • Ultra-versatile high-resolution FEG SEM with unique environmental capability (ESEM)
  • Observe all information from all samples with simultaneous SE and BSE imaging in every mode of operation
Thermo Scientific Prisma E scanning electron microscope (SEM)

Prisma E SEM

  • Entry-level SEM with excellent image quality
  • Easy and quick sample loading and navigation for multiple samples
  • Compatible with a wide range of materials thanks to dedicated vacuum modes
Thermo Scientific Apreo 2 scanning electron microscope (SEM)

Apreo 2 SEM

  • High-performance SEM for all-round nanometer or sub-nanometer resolution
  • In-column T1 backscatter detector for sensitive, TV-rate materials contrast
  • Excellent performance at long working distance (10 mm)

VolumeScope 2 SEM

  • Isotropic 3D data from large volumes
  • High contrast and resolution in high and low vacuum modes
  • Simple switch between normal SEM use and serial block-face imaging

Phenom ProX G6 Desktop SEM

  • High performance desktop SEM with integrated EDS detector
  • Resolution <6 nm (SE) and <8 nm (BSE); magnification up to 350,000x
  • Optional SE detector

Centrios HX Circuit Edit System

  • Cutting-edge circuit editing for sub 7nm advanced semiconductor
  • Unparalleled milling precision and control with low landing energy
  • Advanced navigation and ion beam placement accuracy

Centrios CE

  • High-performance circuit editing for 14-nm and above design rules
  • Superior milling precision and control
  • Advanced navigation and ion beam placement accuracy

ELITE System

  • Electrical defect localization
  • Thermal mapping
  • Advanced packaging analysis

nProber IV

  • Localize transistor and BEOL faults
  • Thermal nanoprobing (-40°C to 150°C)
  • Semi-automated operation

Hyperion II System

  • Atomic Force Probing
  • Localize transistor faults
  • Integrated PicoCurrent (CAFM)

Meridian S System

  • Fault Diagnostic with Active Probe Technology
  • Static laser stimulation (SLS / OBIRCH) and photon emission options
  • Supports both micro-probing and probe card device stimulation

Meridian WS-DP System

  • High-sensitivity, low-noise, low-voltage photon emission detection with broadband DBX or InGaAs camera systems
  • Multi-wavelength laser scanning microscope for scan chain analysis, frequency mapping, transistor probing and isolation of faults

Meridian 7 System

  • Dynamic Optical Fault Isolation for 10nm node and below
  • High resolution visible and Infrared light
  • High-yield sample preparation to 5μm widely available

Meridian IV System

  • High sensitivity extended-wavelength DBX photon emission detection
  • Standard InGaAs photon emission detection
  • Laser Scanning Microscope with multiple wavelength options

AutoTEM 5

  • Fully automated in situ S/TEM sample preparation
  • Support of top-down, planar and inverted geometry
  • Highly configurable workflow
  • Easy to use, intuitive user interface
Thermo Scientific Auto Slice and View 4.0 serial section electron microscopy software

Auto Slice and View 4.0 Software

  • Automated serial sectioning for DualBeam
  • Multi-modal data acquisition (SEM, EDS, EBSD)
  • On-the-fly editing capabilities
  • Edge based cut placement
Thermo Scientific Maps electron microscopy software

Maps Software

  • Acquire high-resolution images over large areas
  • Easily find regions of interest
  • Automate image acquisition process
  • Correlate data from different sources

Avizo Software
Materials Science

  • Support for multi-data/multi-view, multi-channel, time series, very large data
  • Advanced multi-mode 2D/3D automatic registration
  • Artifact reduction algorithms

iFast Software

  • Macro recorder for faster recipe creating
  • Runner for unattended overnight operation
  • Alignment tools: Image recognition and edge finding
Thermo Scientific Inspect 3D tomography software

Inspect 3D Software

  • Image processing tools and filters for cross-correlation
  • Feature tracking for image alignment
  • Algebraic reconstruction technique for iterative projection comparison

NEXS Software

  • Auto-syncs position/magnification between NEXS and Circuit Edit system for a more seamless user experience
  • Connects to most Thermo Scientific tools used for EFA, PFA and Circuit Edit space
Style Sheet to change H2 style to p with em-h2-header class

Contact us

Style Sheet to change H2 style to p with em-h2-header class
Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards

Electron microscopy services for
semiconductors

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.

Learn more ›