Search Thermo Fisher Scientific
Fibrous materials, such as carbon or glass fiber (CFRP, GFRP), fabric (multi-layer composites), fiber-reinforced concrete (FRC), and organic fibers are used in a wide range of applications and industries (automotive, aerospace, etc.). Imaging techniques such as microCT or SEM allow for analysis of those materials; for example, to detect manufacturing imperfections or to quantify microstructures to obtain insights on mechanical properties (strength, stiffness, etc.).
Thermo Scientific Avizo Software is an all-in-one image analysis platform that allows the visualization, processing, and quantification of fibrous materials. Avizo Software enables the detection of manufacturing process damage such as matrix cracking, fiber/matrix debonding, or fiber breakage. Imperfections in the material can be quantified locally (voids, cracks) or globally (cross-sectional distortions or misalignments).
凭借功能 强大的 分割和 图像 处理能力与工作流程以及与科学界和数千名研究人员超过 20 年 的合作, 现已证明,我们基于数字成像的工作流程为 工业和科学 问题提供了 可靠解决方案。
由于您的需求独一无二且不断变化,我们的软件解决方案非常灵活并且可以定制。借助我们的脚本编写界面(Python、TCL)、与 MATLAB 桥接以及编程 API,您可以扩展我们的软件解决方案并整合您自己的 IP(知识产权)。如果需要,我们的专业服务团队可以帮助设计符合您需求的独特解决方案。
Many industries face the challenge of designing lightweight materials. Sandwich-structured composites are a special class of composite materials with the typical features of low weight, high stiffness, and high strength. The fibers of such material enhance properties of the final part (strength and stiffness) while minimizing weight. Their distribution and direction are crucial factors for the mechanical properties of the final part.
Avizo Software enables analysis of the internal fiber structure to improve these properties and the product development process. Fiber length distribution, diameter distribution, and through thickness orientation variation can be computed.
Royal DSM uses Avizo Software for glass fiber length and orientation analysis of reinforced polymers (GFRP).
Courtesy of EMS Grivory
Fibers are used in concrete to increase its structural integrity. The characteristics of fiber-reinforced concrete change with varying fiber material geometries, distributions, orientations, and densities.
Avizo Software enables characterization of the tensile strength of the FRC by identifying the fibers and providing their average orientation. Further quantification is performed to analyze porosity distribution in the concrete, based on pore network modeling techniques.
Courtesy of EMPA
Voids concentrate stress points in materials and can initiate cracks in composite materials. Therefore, volume fraction information and other microstructural characteristics such as spatial distribution and aspect ratio are of high value.
In this example, the correlation between matrix cracks and fiber density is analyzed. Fiber density is mapped on the segmented model. Density is low around matrix cracks (voids). Visual inspection allows for verification that voids are smaller than the gaps they create between fibers.
Data courtesy of Rigaku Corporation
Evaluation of material performance is of high importance. The ability to predict where damage occurs and how it evolves is critical in many industries. The nature of damage evolution captured in this study helps guide the design of a 3D composite with more resistance to fatigue damage.
Courtesy of Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester
With the aim to prevent global food security issues, optimization of the design of fertilizer granules for plant breeding and soil quality enhancement is an important topic of research. MicroCT scans of the plant from germination to maturity allow for visualization and analysis of the interactions of root and fertilizer to inform the design process.
However, segmenting roots from X-ray tomography data is highly challenging for plants such as wheat, due to their fine roots and a density range similar to pore-water and organic matter found in the surrounding soil. The powerful XFiber extension of Avizo Software enables correlation of roots based on the greyscale information and automatically classifies them. Root length and diameter can then be computed to assess mean growth root rate per fertilizer.
Courtesy of Sharif Ahmed, µ-VIS X-Ray Imaging Centre, Faculty of Engineering and the Environment University of Southampton, Southampton, UK
Discover how Avizo Software is used to solve complex challenges, including yours!
Many industries face the challenge of designing lightweight materials. Sandwich-structured composites are a special class of composite materials with the typical features of low weight, high stiffness, and high strength. The fibers of such material enhance properties of the final part (strength and stiffness) while minimizing weight. Their distribution and direction are crucial factors for the mechanical properties of the final part.
Avizo Software enables analysis of the internal fiber structure to improve these properties and the product development process. Fiber length distribution, diameter distribution, and through thickness orientation variation can be computed.
Royal DSM uses Avizo Software for glass fiber length and orientation analysis of reinforced polymers (GFRP).
Courtesy of EMS Grivory
Fibers are used in concrete to increase its structural integrity. The characteristics of fiber-reinforced concrete change with varying fiber material geometries, distributions, orientations, and densities.
Avizo Software enables characterization of the tensile strength of the FRC by identifying the fibers and providing their average orientation. Further quantification is performed to analyze porosity distribution in the concrete, based on pore network modeling techniques.
Courtesy of EMPA
Voids concentrate stress points in materials and can initiate cracks in composite materials. Therefore, volume fraction information and other microstructural characteristics such as spatial distribution and aspect ratio are of high value.
In this example, the correlation between matrix cracks and fiber density is analyzed. Fiber density is mapped on the segmented model. Density is low around matrix cracks (voids). Visual inspection allows for verification that voids are smaller than the gaps they create between fibers.
Data courtesy of Rigaku Corporation
Evaluation of material performance is of high importance. The ability to predict where damage occurs and how it evolves is critical in many industries. The nature of damage evolution captured in this study helps guide the design of a 3D composite with more resistance to fatigue damage.
Courtesy of Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester
With the aim to prevent global food security issues, optimization of the design of fertilizer granules for plant breeding and soil quality enhancement is an important topic of research. MicroCT scans of the plant from germination to maturity allow for visualization and analysis of the interactions of root and fertilizer to inform the design process.
However, segmenting roots from X-ray tomography data is highly challenging for plants such as wheat, due to their fine roots and a density range similar to pore-water and organic matter found in the surrounding soil. The powerful XFiber extension of Avizo Software enables correlation of roots based on the greyscale information and automatically classifies them. Root length and diameter can then be computed to assess mean growth root rate per fertilizer.
Courtesy of Sharif Ahmed, µ-VIS X-Ray Imaging Centre, Faculty of Engineering and the Environment University of Southampton, Southampton, UK
Discover how Avizo Software is used to solve complex challenges, including yours!
通过专门为 Amira、Avizo 和 PerGeos 软件新用户设计的入门培训,缩短学习曲线,使投资收益最大化。
课程包括一个讲座及互动提问环节。培训材料重点讲述 Amira、Avizo 和 PerGeos 软件的基本特点和功能。
通过专为 Amira、Avizo 和 PerGeos 软件的现有用户设计的高级培训使投资收益最大化并缩短取得成果的时间。
课程包括一个讲座及互动提问环节。培训材料重点讲述 Amira、Avizo 和 PerGeos 软件的高级特点和功能。
赛默飞世尔科技在 3D 和图像处理方面拥有超过 25 年的经验,向众多小型和大型机构交付了数百个定制项目,可根据您的特定需求为您提供量身定制的解决方案。
我们可以定制和扩展我们不同级别的软件解决方案。
Avizo Software provides dedicated tools for fiber analysis: