Search Thermo Fisher Scientific
The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway plays a critical role in the signaling of a wide array of cytokines and growth factors. These cytokines and growth factors are responsible for various cellular functions, including proliferation, growth, hematopoiesis, and immune response [1-4]. Thermo Scientific™ has a wide range of products to help with JAK-STAT research. The binding of cytokines and growth factors to their corresponding receptors activates JAK, which then phosphorylates the receptor and STAT proteins on specific tyrosine residues. STATs then dimerize, translocate to the nucleus, bind to the consensus DNA sequence of 5’-TT(N4–6)AA-3’ and initiate the transcription of target genes [1-4].
Four JAK family kinases and seven STAT family members have been identified:
Common targets in the JAK/STAT Pathway:
JAK1, JAK2, and TYK2 appear to be universally expressed, while JAK3 expression is normally limited to lymphoid cells. The JAKs are structurally unique in having a C-terminal kinase domain (JH1) preceded by a pseudokinase domain (JH2), which lacks catalytic activity but has a critical regulatory function. JAKs also have a Src homology 2 (SH2) domain and an N-terminal band four-point-one, ezrin, radixin, moesin (FERM) domain that is critical for mediating the association with cytokine receptors.
STAT proteins contain a SH2 domain for dimerization and a DNA-binding domain. The amino acid sequence diversity and their tissue-specific distributions account for the diverse roles of STATs in response to extracellular cytokines. [1-4] The JAK-STAT pathways are up-regulated by a vast array of cytokines/growth factors. One mechanism for negative regulation of JAK-STAT pathways is through suppresser of cytokine signaling (SOCS) proteins, which directly bind to and inactivate JAKs [5], and protein inhibitors of activated STATs (PIAS) that bind to phosphorylated STAT dimers, preventing DNA binding [6].
Abnormal constitutive activation of JAK-STAT pathways has been implicated in various cancers and immune disorders. For example, STAT3 and STAT5 is overactive in many tumors, including major carcinomas and some hematologic tumors [7, 8]. Activating mutations in JAK2 have been linked to leukemia. TEL-JAK2 fusion due to chromosomal translocation was identified in a small set of human T cell acute lymphoblast leukemia patients [9]. The V617F mutation in the JH2 pseudo-kinase domain of JAK2 was found in a high percentage of patients with myeloproliferative disorders, including polycythaemia vera [10]. Inhibitors of JAK-STAT pathways are currently being developed in the areas of oncology and immune disorders.
|
Thermo Scientific™ offers antibodies, ELISAs, Luminex® multiplex assays and growth factors for key targets in the JAK-STAT signaling pathway.
Featured below is flow cytometry and ELISA data using Thermo Scientific™ products.
Flow cytometry analysis of STAT4 on human Jurkat cells. Cells were fixed and permeabilized with FIX & PERM® reagents. Cells were stained with an STAT4 Abfinity recombinant rabbit monoclonal antibody (Product # 700185, black histogram) or left unstained (blue histogram). After incubation of the primary antError! Hyperlink reference not valid.ibody for 1 hour on ice, the cells were stained with a Alexa Fluor 488-conjugated goat anti-rabbit IgG secondary antibody. Note that pre-incubation with immunogenic peptide resulted in partial block of the STAT4 signal (red).
Cell extracts were prepared and analyzed with the STAT5a [pY694] ELISA and STAT5a Total ELISA kits. Phosphorylation of STAT5a is increased in sodium vanadate-treated HEL cells. The total level of STAT5a remains relatively constant in the treated vs. untreated control. Data was generated using a Novex® STAT5a [pY694] ELISA kit (Cat. No. KHO0761) and STAT5a (total) ELISA kit (Cat. No. KHO0751).
Analysis of STAT5b [pY699] phosphorylation in TF-1 cells. TF-1 cells were treated with IFN-α, IL-3, or left untreated . Cell lysates were analyzed using the STAT5b [pY699] ELISA kit. Treatment with IFN-α or IL-3 results in activation of the JAK/STAT pathway, as seen by the upregulation of phosphorylated STAT5b. Data was generated using a Novex® IFN-α Pure Recombinant protein (Cat. No. PHC4014).
Our scientists have been hard at work trying to better understand the JAK-STAT cell signaling pathway over the years. For further information on this pathway please see our publications, white papers and posters:
Catalog Number | Product Name |
AHC4539 | IFN-gamma |
AHC2919 | GM-CSF |
M621B | IL-6 |
AHC0939 | IL-3 |
ARC0132 | IL-13 |
135300 | STAT5b |
133600 | STAT5a |
M450 | IL-4 |
M600B | IL-2 |
M122 | IL-12 |
333400 | Phospho-STAT1 pTyr701 |
44829M | Phospho-SHC pTyr239/pTyr240 |
137000 | STAT3 |
M806 | EGF |
AHO1352 | JAK2 |
44422G | Phospho-JAK1 pTyr1022/pTyr1023 |
717900 | Phospho-STAT4 pTyr693 |
AHC4815 | IFN-alpha |
MA515561 | JAK3 |
700247 | Phospho-STAT6 pTyr641 |
For Research Use Only. Not for use in diagnostic procedures.