bf5a- Apps/Techniques/Products/Resources/Contact Us

Displays are an essential part of our daily lives. Over the past decade, mainstream display technology has transitioned from LCD to OLED with new technologies such as quantum dot and micro-LED emerging. Resolution, luminance, form factor, reliability, and quality are driving continuous innovation in display development.

As display technologies advance, research and development, process metrology, and failure analysis challenges increase, requiring fast time-to-data and reliable solutions.

Engineering future generations of advanced display technology

Improving display quality and light conversion efficiency, while continuing to increase yields and reducing production costs is critical.

Mainstream (OLED) technology is striving to deliver a longer display life and new form factors, leading to the continued development of thin-film encapsulation (TFE) technology. The evolution from quantum dot enhancement film (QDEF) to electroluminescent QD LED demands precise characterization and control over the size and shape of the microstructure. For micro-LED, there is a continued desire to improve its external quantum efficiency and reduce leakage current.  

These advancements introduce new engineering challenges that necessitate nano-scale analysis, repeatable performance, and high-quality data from S/TEM based analytical workflows.

Anatomy of a cell phone.

Semiconductor process metrology for high-quality display device manufacturing

As designers shrink the dimensions of display technology, the need for high accuracy metrology increases. Reducing pixel size improves resolution, reducing the display thickness increases energy conversion. New architectures require the critical dimensions (CD) of the backplane and the light-emitting unit be controlled accurately in both lateral and vertical directions. Tighter design specifications require fast FIB/SEM based metrology with a high degree of automation and repeatability.

Failure analysis of display technology

Display device manufacturing is increasingly complex. Defects due to particles, contamination, or process deviations can impact panel yield and productivity. As pixel size shrinks laterally, and structural complexity increases, traditional optical inspection methods no longer detect all the “killer” defects. With defects occurring in the panel or the fully assembled display module, isolating the defect to a particular depth or vertical layer becomes more challenging. This places a greater premium on solutions and workflows that deliver thin slices through large volume samples with surgical precision and minimal damage while providing high-resolution images to identify defects quickly and confidently.

Thermo Fisher Scientific offers a unique and comprehensive set of workflows to meet the R&D, metrology, and defect characterization needs of the advanced display industry.

Example workflows
1. Display panel failure analysis workflow:

 

2. Display module assembly failure analysis workflow:


Resources

Applications

pathfinding_thumb_274x180_144dpi

Semiconductor Pathfinding and Research

Advanced electron microscopy, focused ion beam, and associated analytical techniques for identifying viable solutions and design methods for the fabrication of high-performance semiconductor devices.

yield_ramp_metrology_2_thumb_274x180

Yield Ramp and Metrology

We offer advanced analytical capabilities for defect analysis, metrology, and process control, designed to help increase productivity and improve yield across a range of semiconductor applications and devices.

Semiconductor Failure Analysis

Semiconductor Failure Analysis

Increasingly complex semiconductor device structures result in more places for failure-inducing defects to hide. Our next-generation workflows help you localize and characterize subtle electrical issues that affect yield, performance, and reliability.

physical_characterization_thumb_274x180_144dpi

Physical and Chemical Characterization

Ongoing consumer demand drives the creation of smaller, faster, and cheaper electronic devices. Their production relies on high-productivity instruments and workflows that image, analyze, and characterize a broad range of semiconductor and display devices.

esd_thumb_274x180_144dpi

ESD Semiconductor Qualification

Every electrostatic discharge (ESD) control plan is required to identify devices that are sensitive to ESD. We offer a complete suite of test systems to help with your device qualification requirements.


Techniques

Thermal Fault Isolation

Uneven distribution of local power dissipation can cause large, localized increases in temperature, leading to device failure. We offer unique solutions for thermal fault isolation with high-sensitivity lock-in infrared thermography (LIT).

Learn more ›

Semiconductor Analysis and Imaging

Thermo Fisher Scientific offers scanning electron microscopes for every function of a semiconductor lab, from general imaging tasks to advanced failure analysis techniques requiring precise voltage-contrast measurements.

Learn more ›

SEM Metrology

Scanning electron microscopy provides accurate and reliable metrology data at nanometer scales. Automated ultra-high-resolution SEM metrology enables faster time-to-yield and time-to-market for memory, logic, and data storage applications.

Learn more ›

Sample Preparation of Semiconductor Devices

Thermo Scientific DualBeam systems provide accurate TEM sample preparation for atomic-scale analysis of semiconductor devices. Automation and advanced machine learning technologies produce high-quality samples, at the correct location, and a low cost per sample.

Learn more ›

Semiconductor TEM Imaging and Analysis

Thermo Scientific transmission electron microscopes offer high-resolution imaging and analysis of semiconductor devices, enabling manufacturers to calibrate toolsets, diagnose failure mechanisms, and optimize overall process yields.

Learn more ›

Device Delayering

Shrinking feature size, along with advanced design and architecture, results in increasingly challenging failure analysis for semiconductors. Damage-free delayering of devices is a critical technique for the detection of buried electrical faults and failures.

Learn more ›

ESD Compliance Testing

Electrostatic discharge (ESD) can damage small features and structures in semiconductors and integrated circuits. We offer a comprehensive suite of test equipment which verifies that your devices meet targeted ESD compliance standards.

Learn more ›

Thermal Fault Isolation

Uneven distribution of local power dissipation can cause large, localized increases in temperature, leading to device failure. We offer unique solutions for thermal fault isolation with high-sensitivity lock-in infrared thermography (LIT).

Learn more ›

Semiconductor Analysis and Imaging

Thermo Fisher Scientific offers scanning electron microscopes for every function of a semiconductor lab, from general imaging tasks to advanced failure analysis techniques requiring precise voltage-contrast measurements.

Learn more ›

SEM Metrology

Scanning electron microscopy provides accurate and reliable metrology data at nanometer scales. Automated ultra-high-resolution SEM metrology enables faster time-to-yield and time-to-market for memory, logic, and data storage applications.

Learn more ›

Sample Preparation of Semiconductor Devices

Thermo Scientific DualBeam systems provide accurate TEM sample preparation for atomic-scale analysis of semiconductor devices. Automation and advanced machine learning technologies produce high-quality samples, at the correct location, and a low cost per sample.

Learn more ›

Semiconductor TEM Imaging and Analysis

Thermo Scientific transmission electron microscopes offer high-resolution imaging and analysis of semiconductor devices, enabling manufacturers to calibrate toolsets, diagnose failure mechanisms, and optimize overall process yields.

Learn more ›

Device Delayering

Shrinking feature size, along with advanced design and architecture, results in increasingly challenging failure analysis for semiconductors. Damage-free delayering of devices is a critical technique for the detection of buried electrical faults and failures.

Learn more ›

ESD Compliance Testing

Electrostatic discharge (ESD) can damage small features and structures in semiconductors and integrated circuits. We offer a comprehensive suite of test equipment which verifies that your devices meet targeted ESD compliance standards.

Learn more ›

Products

Style Sheet for Instrument Cards Original

ELITE System

  • Completely non-destructive
  • Quickly identifies defective component on assembly board for accurate dispositioning
  • Localizes defect in x-y with micrometer accuracy, with depth location accurate to 20 µm

Helios 5 PFIB DualBeam

  • Gallium-free STEM and TEM sample preparation
  • Multi-modal subsurface and 3D information
  • Next-generation 2.5 μA xenon plasma FIB column

Helios 5 DualBeam

  • Fully automated, high-quality, ultra-thin TEM sample preparation
  • High throughput, high resolution subsurface and 3D characterization
  • Rapid nanoprototyping capabilities

Talos F200E TEM

  • High-quality (S)TEM imaging of semiconductor and microelectronic devices
  • Precise, high-speed chemical characterization with EDS
  • Dedicated semiconductor-related applications
Thermo Scientific Apreo 2 scanning electron microscope (SEM)

Apreo 2 SEM

  • High-performance SEM for all-round nanometer or sub-nanometer resolution
  • In-column T1 backscatter detector for sensitive, TV-rate materials contrast
  • Excellent performance at long working distance (10 mm)

Spectra 200

  • High-resolution and contrast imaging for accelerating voltages from 30-200 kV
  • Symmetric S-TWIN/X-TWIN objective lens with wide-gap pole piece design of 5.4 mm
  • Sub-Angstrom STEM imaging resolution from 60 kV-200 kV

Spectra 300

  • Highest-resolution structural and chemical information at the atomic level
  • Flexible high-tension range from 30-300 kV
  • Three lens condenser system

Contact us

Style Sheet for Komodo Tabs
Style Sheet to change H2 style to p with em-h2-header class
Style Sheet to change H3 to p with em-h3-header class
Style Sheet to change Applications H3 to p with em-h3-header class
Style Sheet to change H2 style to p with em-h2-header class
Style Sheet for Support and Service footer
Style Sheet for Fonts
Style Sheet for Cards

Electron microscopy services for
semiconductors

To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.

Learn more ›