Search Thermo Fisher Scientific
Search Thermo Fisher Scientific
卓上走査型電子顕微鏡(SEM)Thermo Scientific Phenom Pureは、光学顕微鏡から電子顕微鏡への移行に最適なツールです。高画質観察用のエントリーモデルであり、クラス最高の画像結果を提供します。
卓上SEM Phenom Pureは、長寿命で高輝度のCeB6電子銃により高画質な画像を提供し、市場で最速の導入時間および画像取得時間を実現します。非常に信頼性の高いオートフォーカスと自動電子ビーム調整により、市場でもっともユーザーフレンドリーなシステムとなっています。
ユーザーは、迷うことのない独自のナビゲーションシステムにより、常に試料上の位置を把握できます。光学像とSEM像の両方で全体を見渡すことができるので、常に明確な基準点が得られます。搭載された電動ステージにより、試料の端から端まで迅速にナビゲートできます。
ユーザーは、わずか10分間の基本トレーニングで、すぐ画像を取得できるようになります。広範囲な試料に対応できる、さまざまな試料ホルダをご用意しています。当社の特許取得済み試料真空導入技術により、試料導入が迅速かつ安全です。
卓上SEM Phenom Pureには、2つのオプションの検出器システムを装備できます。最初のシステムは、完全に統合されたエネルギー分散型X線分析(EDS)システムです。2つ目は、表面およびトポグラフィーに敏感な画像が必要となるアプリケーション用の二次電子検出器(SED)です。
光学ナビゲーション倍率 |
|
電子顕微鏡倍率 |
|
分解能 |
|
デジタルズーム |
|
光学NavCam |
|
加速電圧 |
|
真空モード |
|
検出器 |
|
試料サイズ |
|
試料高さ |
|
使いやすさを犠牲にすることなく、走査電子顕微鏡の優れた能力を活用できます。走査電子顕微鏡の詳細情報と、デスクトップSEMが最適な方法で研究を補助できる理由を、PhenomデスクトップSEMブログでご確認ください。
このオンデマンドのe-learningは、お客様独自のニーズに最適なSEMを決定するのに役立つよう設計されています。当社は、マルチユーザー研究ラボ向けの サーモフィッシャーサイエンティフィックSEM技術の概要を説明し、これらの幅広いソリューションがどのように性能、汎用性、in situダイナミクスを提供し、結果を得るまでの時間を短縮するかに焦点を当てています。ご興味のある方は、以下のe-learningをご覧ください。
このオンデマンドのe-learningは、お客様独自のニーズに最適なSEMを決定するのに役立つよう設計されています。当社は、マルチユーザー研究ラボ向けの サーモフィッシャーサイエンティフィックSEM技術の概要を説明し、これらの幅広いソリューションがどのように性能、汎用性、in situダイナミクスを提供し、結果を得るまでの時間を短縮するかに焦点を当てています。ご興味のある方は、以下のe-learningをご覧ください。
近年の産業では、確かなプロセス制御によって維持される優れた品質とスループットの両立が求められています。専用の自動化ソフトウェアを搭載したSEMおよびTEMツールは、プロセスモニタリングおよびプロセス改善のための迅速なマルチスケール情報を提供します。
近年の産業では、品質管理と品質保証が不可欠です。私たちは、欠陥をマルチスケールかつ多モードで分析可能なEMおよび分光ツールを提供しており、これらにより得られる信頼性の高い十分な情報によりプロセス制御および改善のための決定が可能となります。
新材料開発では、その物理的および化学的特性を最大化するために、より小さなスケールでの研究がなされています。電子顕微鏡は、マイクロスケールからナノスケールのさまざまな材料特性について重要な情報を研究者に提供します。
EDS元素分析
EDSは、電子顕微鏡観察に不可欠な組成情報を提供します。特に、当社独自のSuper-XおよびDual-X検出器システムはSTEM-EDS分析の速度や感度を向上させるため、材料の研究に必要な元素分布情報が入手しやすくなります。
3D EDSトモグラフィー
現代の材料研究は、3次元のナノスケール分析にますます依存しています。3Dの電子顕微鏡解析およびエネルギー分散型X線分光法を使用することにより、全元素の組成情報を含む微細構造の3D解析が可能になります。
EDSによる原子分解能元素マッピング
原子分解能EDSでは、個々の原子のレベルで元素を識別できるため、優れた高分解能の組成情報が得られます。高分解能S/TEMイメージングとの組み合わせにより、試料中の原子構成を正確に観察できます。
高温試料のイメージング
実際の条件下で材料を研究するには、高温の試料を観察する必要もよくあります。高温下で材料が再結晶化、溶解、変形、反応する際の挙動は、走査電子顕微鏡またはDualBeamシステムを用いてin situで研究できます。
In situ試験
加熱、冷却、液中での再結晶化、グレイン成長、相変態などの動的プロセスの基本原理を理解するには、電子顕微鏡を用いて、微細構造変化を直接かつリアルタイムで観察する必要があります。
マルチスケール分析
新しい材料の場合、その構造全体を把握しながら、高い分解能で分析する必要があります。マルチスケール分析では、X線マイクロCT、DualBeam、レーザーPFIB、SEM、TEMなどのさまざまなイメージング技術や方法の相関が可能です。
EDS元素分析
EDSは、電子顕微鏡観察に不可欠な組成情報を提供します。特に、当社独自のSuper-XおよびDual-X検出器システムはSTEM-EDS分析の速度や感度を向上させるため、材料の研究に必要な元素分布情報が入手しやすくなります。
3D EDSトモグラフィー
現代の材料研究は、3次元のナノスケール分析にますます依存しています。3Dの電子顕微鏡解析およびエネルギー分散型X線分光法を使用することにより、全元素の組成情報を含む微細構造の3D解析が可能になります。
EDSによる原子分解能元素マッピング
原子分解能EDSでは、個々の原子のレベルで元素を識別できるため、優れた高分解能の組成情報が得られます。高分解能S/TEMイメージングとの組み合わせにより、試料中の原子構成を正確に観察できます。
高温試料のイメージング
実際の条件下で材料を研究するには、高温の試料を観察する必要もよくあります。高温下で材料が再結晶化、溶解、変形、反応する際の挙動は、走査電子顕微鏡またはDualBeamシステムを用いてin situで研究できます。
In situ試験
加熱、冷却、液中での再結晶化、グレイン成長、相変態などの動的プロセスの基本原理を理解するには、電子顕微鏡を用いて、微細構造変化を直接かつリアルタイムで観察する必要があります。