CRISPR solution

Customize your vector

CRISPR 기반 유전체 교정을 위한 All-in-one 플라스미드 시스템

GeneArt CRISPR Nuclease Vector Kit를 사용하면 transfection, 농축, 스크리닝, 게시가 가능합니다. CRISPR Nuclease 시스템은 즉시 사용 가능한 All-in-one 발현 시스템으로서, Cas9 핵산분해효소 발현 카세트와 guide RNA 클로닝 카세트를 포함하므로 표적 특이적 crRNA를 빠르게 클로닝할 수 있습니다. 이 시스템을 통해 단일 플라스미드에서 서열 특이적 방식으로 선택한 게놈 locus를 편집하고 가공할 수 있습니다. GeneArt CRISPRs 로 관련 표적을 확인한 후에는 GeneArt TALs 로 생물학적 원리에 기반한 돌연변이를 밸리데이션하여 잠재적인 off-target 효과를 줄일 수 있습니다.

지금 구입하기  기술 제품 가이드 다운로드

The CRISPR-Cas9 system is a two-component system, consisting of the target-specific CRISPR gRNA and Cas9 nuclease. For genome editing to be successful, both the Cas9 and gRNA need to be expressed together in the target cells. We offer the necessary tools for the design and engineering of target-specific gRNA and Cas9 nuclease expression plasmids enabling you to pursue different experimental strategies.

Products for CRISPR-Cas9 design

For designing your vector you may choose between two separate plasmids for Cas9 and gRNA, respectively, or a single plasmid for both genes:

  • Plasmid for Cas nuclease expression obtained from open-access resources (e.g., Addgene, the nonprofit global plasmid repository)
  • gRNA cloning vector obtained from open-access resources (e.g., Addgene)
  • GeneArt CRISPR Nuclease vector for cloning Cas9 and gRNA together

All-in-one plasmid system

Transfect, enrich, screen, and publish by using our GeneArt CRISPR Nuclease Vector Kit. The CRISPR Nuclease system offers a ready-to-use, all-in-one expression vector system with a Cas9 nuclease expression cassette and a guide RNA cloning cassette for fast cloning of a target-specific crRNA. This system allows you to edit and engineer the genomic locus of your choice in a sequence-specific manner from a single plasmid. After relevant targets have been identified with GeneArt CRISPRs, the biologically-relevant mutations can be validated with GeneArt TALs to reduce potential off-targeting.

Buy now Request resource guide

GeneArt CRISPR Nuclease Vector Kits

GeneArt CRISPR Nuclease Vector Kits are reporter vector systems for expression of the functional components needed for CRISPR-Cas genome editing. The kits make it easy to express noncoding guide RNA (including crRNA and tracrRNA), using a plasmid vector that also expresses Cas9 endonuclease.

The GeneArt CRISPR Nuclease Vector with OFP (orange fluorescent protein) for flow cytometry-based sorting of crRNA-expressing cell populations, whereas GeneArt CRISPR Nuclease Vector with CD4 enables bead-based enrichment of crRNA-expressing cells.

GeneArt® CRISPR nuclease vectors

GeneArt® CRISPR nuclease vectors

GeneArt CRISPR Nuclease Vectors. (A) GeneArt CRISPR Nuclease: OFP Reporter Plasmid map and features of GeneArt CRISPR Nuclease: OFP Reporter. The vector is supplied linearized between nucleotides 6,732 and 6,752, with 5 bp 5´ overhangs on each strand as indicated. (B) GeneArt CRISPR Nuclease: CD4 Enrichment Plasmid map and features of GeneArt CRISPR Nuclease: CD4 Enrichment. The vector is supplied linearized between nucleotides 7,336 and 7,355, with 5 bp 5´ overhangs on each strand as indicated. The linearized GeneArt CRISPR Nuclease Vectors provide a rapid and efficient way to clone double-stranded oligonucleotides encoding a crRNA representing a desired target into an expression cassette that allows sequence-specific targeting of the Cas9 nuclease.
 

For constructing your own plasmid for gRNA expression you may need:
For easy cloning of novel CRISPR nuclease sequences or subcloning work you may need:
Custom CRISPR for every gene; we'll design your target and clone it for you.
Ready-to-transfect.
Contact us

Related products

Invitrogen TrueTag Donor DNA Kits can help you obtain up to 100% knocked-in cells using our predesigned and validated donor DNA templates.

Looking for our premium genome editing solutions?

Learn more about our first-class genome engineering products, including TrueCut Cas9 v2 and TrueGuide Synthetic sgRNA.

 

Once DNA fragments coding for CRISPR-Cas9 system components are cloned, the vector can be propagated within E. coli cells to generate sufficient quantities of your expression plasmid. We offer a variety of competent E. coli cells, selection of which depends upon the transformation method, and throughput of your experiment.

There are different methods to verify that your plasmid construct is correct (i.e., PCR, restriction digestion, or sequencing). The choice depends on whether you are interested in determining if the plasmid contains your DNA insert, is the insert in the right orientation, or does the insert have the correct sequence. We provide molecular biology tools to implement any analysis method you may choose.

Buy now

Products for plasmid transformation and subsequent screening of clones

For efficient transformation of constructed CRISPR plasmids you need competent E. coli cells:

Isolate plasmid DNA in sufficient quantities and maximal purity for subsequent delivery to eukaryotic cells. Generate high yields of endotoxin-free plasmid (additional plasmid DNA isolation formats and sizes available).

Before proceeding into following steps you may wish to verify that your plasmid constructs are correct. Choose between different analysis methods:

The CRISPR-Cas9 system simplifies genome editing and has great promise in broad applications such as stem cell engineering, gene therapy, tissue and animal disease models, and engineering disease-resistant transgenic plants.

Transfection is the process by which CRISPR-Cas9 DNA, mRNA, or protein systems are introduced into eukaryotic cells. Construct delivery techniques vary widely and include lipid nanoparticle–mediated transfection, viral delivery, and physical methods such as electroporation.

Buy now

Products used for CRISPR construct delivery into eukaryotic cells

Cell Culture Tools and Essentials:

  • Sera—For your specific cell culture needs: from basic research to specialty assays
  • Cell Culture Plastics—For optimum cell growth and consistency in cell culture
  • Cell Culture Essentials—Find the tools and resources you need for successful cell culture

Whichever genome editing strategy you use, careful monitoring of the process will help you generate robust and reliable results. Start with accurate cell counts and viability determinations, then screen and validate the genotype of your cells. The genotyping technique of the mutant sequence depends on the type of mutation introduced through the CRISPR-generated edit. Here are the most common techniques:

  • PCR amplification and gel electrophoresis for detection of larger Indels
  • Mismatch-cleavage assay for Indel detection (T7 Endonuclease I cleavage assay)
  • PCR amplification and restriction digestion for HDR analysis
  • PCR amplification and cloning followed by Sanger sequencing
  • PCR amplification and NGS

Buy now

Products used to detect CRISPR-mediated genome modifications

Kits and reagents for creating clones carrying DNA fragments with sequences from genomic targets for subsequent Sanger sequencing 

Kit for rapid and quantitative measurements of CRISPR-Cas9 cleavage efficiency at your gene of interest

Kits For isolating plasmid DNA and rapid, real-time DNA analysis using gel electrophoresis:

For accurate amplification of the target genomic regions, from crude or PCR-amplified samples:

Combine the reliability and performance you’ve come to expect from Applied Biosystems thermal cyclers with the flexible configuration and control features that fit how you work today

In as little as 1.5 hours, generate NGS libraries with the best coverage of all genomic regions to detect desired CRISPR-mediated events and search for potential off-target effects.

CRISPR is routinely used for knockout, knock-in, or modulation of gene expression, and the effects can be measured using cell analysis techniques. Real-time PCR allows monitoring changes in the expression at gene level, for example when non-sense mediated decay decreases transcript levels, while western blotting is used to view changes to protein expression in a cell population; flow cytometry provides the throughput for multiparameter analysis on vast numbers of individual cells. Imaging allows for direct analysis of changes in protein expression, compartmentalization, and cell morphology, while high-content analysis (HCA) provides automation for the imaging process with quantitative rigor.

Buy now

Products for further CRISPR analysis and edited cell collection

For the expression analysis by real time PCR isolate transcript RNA from the edited cells and transcribe them into cDNA:

For the differential gene expression detection, you may perform whole transcriptome sequencing. We recommend preparing cDNA libraries that enables strand-specific RNA sequencing on Illumina next-generation sequencing (NGS) systems

The CRISPR-Cas9 system is a two-component system, consisting of the target-specific CRISPR gRNA and Cas9 nuclease. For genome editing to be successful, both the Cas9 and gRNA need to be expressed together in the target cells. We offer the necessary tools for the design and engineering of target-specific gRNA and Cas9 nuclease expression plasmids enabling you to pursue different experimental strategies.

Products for CRISPR-Cas9 design

For designing your vector you may choose between two separate plasmids for Cas9 and gRNA, respectively, or a single plasmid for both genes:

  • Plasmid for Cas nuclease expression obtained from open-access resources (e.g., Addgene, the nonprofit global plasmid repository)
  • gRNA cloning vector obtained from open-access resources (e.g., Addgene)
  • GeneArt CRISPR Nuclease vector for cloning Cas9 and gRNA together

All-in-one plasmid system

Transfect, enrich, screen, and publish by using our GeneArt CRISPR Nuclease Vector Kit. The CRISPR Nuclease system offers a ready-to-use, all-in-one expression vector system with a Cas9 nuclease expression cassette and a guide RNA cloning cassette for fast cloning of a target-specific crRNA. This system allows you to edit and engineer the genomic locus of your choice in a sequence-specific manner from a single plasmid. After relevant targets have been identified with GeneArt CRISPRs, the biologically-relevant mutations can be validated with GeneArt TALs to reduce potential off-targeting.

Buy now Request resource guide

GeneArt CRISPR Nuclease Vector Kits

GeneArt CRISPR Nuclease Vector Kits are reporter vector systems for expression of the functional components needed for CRISPR-Cas genome editing. The kits make it easy to express noncoding guide RNA (including crRNA and tracrRNA), using a plasmid vector that also expresses Cas9 endonuclease.

The GeneArt CRISPR Nuclease Vector with OFP (orange fluorescent protein) for flow cytometry-based sorting of crRNA-expressing cell populations, whereas GeneArt CRISPR Nuclease Vector with CD4 enables bead-based enrichment of crRNA-expressing cells.

GeneArt® CRISPR nuclease vectors

GeneArt® CRISPR nuclease vectors

GeneArt CRISPR Nuclease Vectors. (A) GeneArt CRISPR Nuclease: OFP Reporter Plasmid map and features of GeneArt CRISPR Nuclease: OFP Reporter. The vector is supplied linearized between nucleotides 6,732 and 6,752, with 5 bp 5´ overhangs on each strand as indicated. (B) GeneArt CRISPR Nuclease: CD4 Enrichment Plasmid map and features of GeneArt CRISPR Nuclease: CD4 Enrichment. The vector is supplied linearized between nucleotides 7,336 and 7,355, with 5 bp 5´ overhangs on each strand as indicated. The linearized GeneArt CRISPR Nuclease Vectors provide a rapid and efficient way to clone double-stranded oligonucleotides encoding a crRNA representing a desired target into an expression cassette that allows sequence-specific targeting of the Cas9 nuclease.
 

For constructing your own plasmid for gRNA expression you may need:
For easy cloning of novel CRISPR nuclease sequences or subcloning work you may need:
Custom CRISPR for every gene; we'll design your target and clone it for you.
Ready-to-transfect.
Contact us

Related products

Invitrogen TrueTag Donor DNA Kits can help you obtain up to 100% knocked-in cells using our predesigned and validated donor DNA templates.

Looking for our premium genome editing solutions?

Learn more about our first-class genome engineering products, including TrueCut Cas9 v2 and TrueGuide Synthetic sgRNA.

 

Once DNA fragments coding for CRISPR-Cas9 system components are cloned, the vector can be propagated within E. coli cells to generate sufficient quantities of your expression plasmid. We offer a variety of competent E. coli cells, selection of which depends upon the transformation method, and throughput of your experiment.

There are different methods to verify that your plasmid construct is correct (i.e., PCR, restriction digestion, or sequencing). The choice depends on whether you are interested in determining if the plasmid contains your DNA insert, is the insert in the right orientation, or does the insert have the correct sequence. We provide molecular biology tools to implement any analysis method you may choose.

Buy now

Products for plasmid transformation and subsequent screening of clones

For efficient transformation of constructed CRISPR plasmids you need competent E. coli cells:

Isolate plasmid DNA in sufficient quantities and maximal purity for subsequent delivery to eukaryotic cells. Generate high yields of endotoxin-free plasmid (additional plasmid DNA isolation formats and sizes available).

Before proceeding into following steps you may wish to verify that your plasmid constructs are correct. Choose between different analysis methods:

The CRISPR-Cas9 system simplifies genome editing and has great promise in broad applications such as stem cell engineering, gene therapy, tissue and animal disease models, and engineering disease-resistant transgenic plants.

Transfection is the process by which CRISPR-Cas9 DNA, mRNA, or protein systems are introduced into eukaryotic cells. Construct delivery techniques vary widely and include lipid nanoparticle–mediated transfection, viral delivery, and physical methods such as electroporation.

Buy now

Products used for CRISPR construct delivery into eukaryotic cells

Cell Culture Tools and Essentials:

  • Sera—For your specific cell culture needs: from basic research to specialty assays
  • Cell Culture Plastics—For optimum cell growth and consistency in cell culture
  • Cell Culture Essentials—Find the tools and resources you need for successful cell culture

Whichever genome editing strategy you use, careful monitoring of the process will help you generate robust and reliable results. Start with accurate cell counts and viability determinations, then screen and validate the genotype of your cells. The genotyping technique of the mutant sequence depends on the type of mutation introduced through the CRISPR-generated edit. Here are the most common techniques:

  • PCR amplification and gel electrophoresis for detection of larger Indels
  • Mismatch-cleavage assay for Indel detection (T7 Endonuclease I cleavage assay)
  • PCR amplification and restriction digestion for HDR analysis
  • PCR amplification and cloning followed by Sanger sequencing
  • PCR amplification and NGS

Buy now

Products used to detect CRISPR-mediated genome modifications

Kits and reagents for creating clones carrying DNA fragments with sequences from genomic targets for subsequent Sanger sequencing 

Kit for rapid and quantitative measurements of CRISPR-Cas9 cleavage efficiency at your gene of interest

Kits For isolating plasmid DNA and rapid, real-time DNA analysis using gel electrophoresis:

For accurate amplification of the target genomic regions, from crude or PCR-amplified samples:

Combine the reliability and performance you’ve come to expect from Applied Biosystems thermal cyclers with the flexible configuration and control features that fit how you work today

In as little as 1.5 hours, generate NGS libraries with the best coverage of all genomic regions to detect desired CRISPR-mediated events and search for potential off-target effects.

CRISPR is routinely used for knockout, knock-in, or modulation of gene expression, and the effects can be measured using cell analysis techniques. Real-time PCR allows monitoring changes in the expression at gene level, for example when non-sense mediated decay decreases transcript levels, while western blotting is used to view changes to protein expression in a cell population; flow cytometry provides the throughput for multiparameter analysis on vast numbers of individual cells. Imaging allows for direct analysis of changes in protein expression, compartmentalization, and cell morphology, while high-content analysis (HCA) provides automation for the imaging process with quantitative rigor.

Buy now

Products for further CRISPR analysis and edited cell collection

For the expression analysis by real time PCR isolate transcript RNA from the edited cells and transcribe them into cDNA:

For the differential gene expression detection, you may perform whole transcriptome sequencing. We recommend preparing cDNA libraries that enables strand-specific RNA sequencing on Illumina next-generation sequencing (NGS) systems

Ordering information

Resources

Learning Center
Access genome editing application resources for more success as you plan and execute your experiments.

Simplified CRISPR-Cas9 Protocols
Getting started with CRISPR-Cas9? Need proven genome editing protocols? Check out our collection of step-by-step and cell-line specific recommendations.

FAQs
Find answers to everyday problems, we have consolidated a list of most commonly asked questions.

Webinar Series
Master the art of CRISPR editing by tuning in to our on-demand three-part webinar series.

CRISPR Genome Editing Brochure
Discover our comprehensive portfolio of products and services designed to support every step in your genome editing workflow.

Support

Complementary Concierge
Make a free appointment to connect with one of our technical experts to get started or troubleshooting your genome editing project.

Support Center
Find tips, troubleshooting help, and resources for your genome editing experiments.

Custom Engineering Services
Contact our engineering services team for custom engineered cell lines, bulk reagents, and validation and testing services.

Contact Technical Support
Find experts who can help you with the technicalities of application and product use.

Commercial Licensing Information
Learn about the commercial opportunities

For Research Use Only. Not for use in diagnostic procedures.

GeneArt CRISPR Nuclease Vector Kit

GeneArt CRISPR Nuclease Vector Kit는 CRISPR-Cas 유전체 교정에 필요한 기능적 요소를 발현해 주는 reporter 벡터 시스템입니다. 이 키트는 Cas9 endonuclease를 발현하는 플라스미드 벡터를 사용해 비암호화 guide RNA(crRNA 및 tracrRNA 포함)를 쉽게 발현해 줍니다.

GeneArt CRISPR Nuclease Vector with OFP(주황색형광 단백질)는 유세포분석을 사용해 crRNA 발현 세포 군집을 분류하지만, GeneArt CRISPR Nuclease Vector with CD4 는 비드를 사용해 crRNA 발현 세포를 농축할 수 있습니다.

 

GeneArt CRISPR Nuclease Vectors.(A) GeneArt CRISPR Nuclease: OFP Reporter Plasmid 맵 및 GeneArt CRISPR Nuclease의 특징: OFP Reporter. 이 벡터는 뉴클레오티드 6,732와 6,752 사이에서 선형화되어 출시되고, 표시된 바와 같이 각 가닥에서 5 bp 5´ 돌출부(overhang)를 갖습니다. (B) GeneArt CRISPR Nuclease: CD4 Enrichment Plasmid 맵 및 GeneArt CRISPR Nuclease의 특징: CD4 Enrichment. 이 벡터는 뉴클레오티드 7,336과 7,355 사이에서 선형화되어 출시되고, 표시된 바와 같이 각 가닥에서 5 bp 5´ 돌출부(overhang)를 갖습니다. 선형화된 GeneArt CRISPR Nuclease Vector는 원하는 표적을 나타내는 crRNA를 암호화는 이중 가닥 올리고뉴클레오티드를 발현 카세트에 빠르고 효율적으로 클로닝하므로, Cas9 핵산분해효소를 염기서열 특이적으로 표적화할 수 있습니다.

CRISPR oligo 설계에 대한 유용한 팁

게놈 DNA 표적 염기서열 선택

NGG PAM site의 19–20bp 표적 염기서열 upstream을 선택합니다. PAM 요건을 충족하는 경우에 한해 게놈 DNA의 sense 또는 antisense 가닥에서 표적 부위를 선택할 수 있습니다.

  CRISPR oligos 
 

Step 1

 

Step 2

 

Step 3

 

Step 4

상단 가닥 oligo 설계

선택한 19–20bp 표적 염기서열로 클로닝하는 데 필요한 5-base GTTTT 3’ 돌출부(overhang)를 첨가하여 상단 가닥 oligo를 생성합니다. PAM site는 oligo에 포함하지 마십시오.

  CRISPR oligos 
 

Step 1

 

Step 2

 

Step 3

 

Step 4

하단 가닥 oligo 설계

19–20bp 표적 염기서열에 특이적인 역상보성 염기서열을 생성하고 5-base CGGTG 3’ 돌출부(overhang)를 첨가하여 하단 가닥 oligo를 생성합니다.

  CRISPR oligos 
 

Step 1

 

Step 2

 

Step 3

 

Step 4

올리고 annealing

상단 및 하단 가닥 oligo를 annealing하여 GeneArt® CRISPR Nuclease Vector로 클로닝하는 데 사용할 수 있는 말단을 가진 이중 가닥(ds) oligo를 생성합니다.

  CRISPR oligos 
 

Step 1

 

Step 2

 

Step 3

 

Step 4

게놈 DNA 표적 염기서열 선택

NGG PAM site의 19–20bp 표적 염기서열 upstream을 선택합니다. PAM 요건을 충족하는 경우에 한해 게놈 DNA의 sense 또는 antisense 가닥에서 표적 부위를 선택할 수 있습니다.

  CRISPR oligos 
 

Step 1

 

Step 2

 

Step 3

 

Step 4

상단 가닥 oligo 설계

선택한 19–20bp 표적 염기서열로 클로닝하는 데 필요한 5-base GTTTT 3’ 돌출부(overhang)를 첨가하여 상단 가닥 oligo를 생성합니다. PAM site는 oligo에 포함하지 마십시오.

  CRISPR oligos 
 

Step 1

 

Step 2

 

Step 3

 

Step 4

하단 가닥 oligo 설계

19–20bp 표적 염기서열에 특이적인 역상보성 염기서열을 생성하고 5-base CGGTG 3’ 돌출부(overhang)를 첨가하여 하단 가닥 oligo를 생성합니다.

  CRISPR oligos 
 

Step 1

 

Step 2

 

Step 3

 

Step 4

올리고 annealing

상단 및 하단 가닥 oligo를 annealing하여 GeneArt® CRISPR Nuclease Vector로 클로닝하는 데 사용할 수 있는 말단을 가진 이중 가닥(ds) oligo를 생성합니다.

  CRISPR oligos 
 

Step 1

 

Step 2

 

Step 3

 

Step 4

CRISPR 클로닝 workflow

1. DNA oligo annealing 및 클로닝

클로닝의 경우, 표적 특이적 crRNA를 암호화하는 DNA를 간단히 annealing하고 사전 선형화된 벡터에 결찰합니다. 다음을 포함하여 반응 10회에 충분한 시약이 들어 있습니다.

  • 선형화된 클로닝 벡터, 10X annealing buffer, T4 DNA ligase, 5X DNA ligase buffer, DNase/RNase-free water.
  • 클로닝 효율을 모니터링하기 위한 대조군 이중 가닥 DNA oligo.
  • crRNA 특이적 이중 가닥 oligo 인서트의 방향과 염기서열을 확인하기 위한 U6 정방향 시퀀싱 primer.

2. 형질 전환

결찰 반응을 완료하고 나면, 결과적으로 생성된 CRISPR 핵산분해효소 구조체를 사용해 One Shot® TOP10 Chemically Competent E. coli 의 형질을 전환합니다. One Shot® TOP10 Chemically Competent E. coli는 고효율 클로닝과 플라스미드 증식에 이상적입니다. 이는 높은 복제수 플라스미드의 안정적인 복제가 가능합니다. TOP10 세포의 유전형은 DH10B™ 균주의 유전형과 비슷합니다. 각 결찰 반응마다 튜브 하나의 One Shot® TOP10 E. coli가 필요합니다.

 

3.  세포 배양을 위한 CRISPR 플라스미드 transfection

전달 방법

transfection 방법은 세포 유형에 따라 달라집니다. transfection 방법을 최적화하려면 참고문헌 원본을 참조하거나 세포주 공급업체에 문의하십시오. 특히 배지 요건, 세포 계대배양 시기, 세포를 분할하는 희석 비율에 주의하십시오. 광범위한 포유류 세포주에서 고효율 transfection의 경우에는 양이온 지질 기반 Lipofectamine® 3000 Reagent를 사용하는 것이 좋습니다.

DNA 순도

진핵세포로 transfection하려면, DNA 순도가 높고 페놀과 sodium chloride와 함께 오염물질이 없어야 합니다. prepared with the PureLink® HiPure Plasmid Midiprep Kit를 사용해 조제한 고품질 DNA를 사용하는 것이 좋습니다. 플라스미드 DNA stock은 –20°C에서 보관합니다.

DNA 분량

transfection 시약과 세포주에 따라 최고의 transfection 효율을 산출하는 DNA 용량은 달라집니다. 최적의 transfection 조건을 결정하려면 용량-반응 검사를 실시하는 것이 좋습니다. 6-well transfection 형식에서 293FT 세포를 사용한 당사 경험에 비춰, 세포 합류도가 70%일 때 3μg의 CRISPR-Cas9 발현 플라스미드가 최적의 transfection 효율을 나타냅니다.

CRISPR 유전체 교정 성공 여부 모니터링

CRISPR-Cas9 매개 절단 효율

GeneArt Genomic Cleavage Detection Assay를 사용해 절단 효율을 검출할 수 있습니다. 이 키트는 불일치 검출 endonuclease를 활용하는 기법으로서 세포 NHEJ 복구 중에 삽입과 결실(indel)을 검출합니다.

CRISPR-Cas9-mediated cleavage efficiency

CRISPR-Cas9 매개 절단 효율. HPRT locus에서 GeneArt Genomic Cleavage Detection Assay를 사용한 절단 분석의 겔 분석. (A)HPRT 특이적 CRISPR RNA를 발현하는 GeneArt CRISPR Nuclease OFP Vector를 사용하여 획득한 결과. (B)HPRT 특이적 CRISPR RNA를 발현하는 GeneArt CRISPR Nuclease CD4 Vector를 사용하여 획득한 결과. HeLa tpvhdp transfection한 후 triplicate 절단 분석을 실시하고 indel 비율을 계산했습니다.

FACS를 사용해 모니터링한 Transfection 효율

Cas9는 발현 벡터에서 OFP 또는 CD4에 연결되어 있기 때문에 transfection 효율은 형광 현미경 또는 FAC를 사용해 모니터링할 수 있습니다.

CRISPR-Cas9 transfection efficiency

Transfection 효율. (A) RelA locus에 특이적인 crRNA를 암호화하는 GeneArt® CRISPR Nuclease OFP Vector를 사용한 293T 세포에서의 transfection 효율. 데이터는 transfection된 샘플에서 90% 이상의 OFP 양성 세포를 나타냄. (B) GeneArt® CRISPR Nuclease CD4 Vector의 CD4 기능. 293FT 세포는 AAVS1 특이적 GeneArt® CRISPR Nuclease CD4 Vector를 사용해 transfection되었습니다. 세포를 수득하고 anti-CD4 FITC 항체로 염색하고 유세포분석으로 분석하여 transfection 효율을 측정했습니다. 염색된 세포 중 일부는 형광 현미경으로 분석하기 위해 플레이트에 seeding되었습니다.

Dynabeads® 마그네틱 비드를 사용한 Cas9- 및 gRNA 발현 세포 군집 농축

Cas9와 gRNA를 발현하는 세포는 Dynabeads® CD4 마그네틱 비드 CD4 reporter를 사용한 마그네틱 비드 기반 농축을 통해 농축할 수 있습니다.

Bead-based enrichment using the GeneArt® CRISPR Nuclease Vector with CD4 

 


GeneArt CRISPR Nuclease Vector with CD4를 사용한 비드 기반 농축
. 샘플의 CD4 발현 세포 군집은 매우 낮아 절단 효율이 낮았습니다(1.4%). transfection 후에 CD4 발현 세포는 anti-CD4 항체 코팅 마그네틱 비드를 사용해 나머지 세포 군집에서 농축되었습니다. 세포 팰릿 농축 전과 후에 GeneArt Genomic Cleavage Detection Assay를 실시했습니다. 농축 후 절단 효율을 48.1%로 증가시켰습니다.

 

CRISPR FAQ

모든 유전자의 맞춤 CRISPR. 표적 설계와 클로닝 작업을 지원합니다. 즉시 transfection 가능.100 μg  Contact us