Modern cutting-edge metals are increasingly engineered at the nanoscale to enhance their durability, reliability, and cost. Even traditional processes are now augmented with microscopic inspection to determine the resulting material’s elemental and structural composition.

In particular, the effective production of metals requires precise control of inclusions and precipitates. Depending on their consistency and distribution, these can either strengthen the material or act as contaminants, greatly impacting quality and lifetime. These microscopic properties can include;

  • Nano-precipitates formed during rolling, annealing or hot pressing
  • Nanoscale morphological changes (dislocations, crack initiation sites)
  • Grain boundaries
  • Oxide inclusions that cause casting interruptions in steelmaking

Historically, researchers have used optical microscopy to rate the size and number of inclusions, but this method does not provide any elemental information. Even optical emission spectroscopy, which can determine the elemental ratios of inclusions, does not accurately characterize the shape and composition of individual inclusions. Electron microscopy techniques have also been used for metal analysis, with scanning electron microscopy (SEM) capable of visualizing larger oxide inclusions, whereas transmission electron microscopy (TEM) is generally required to study features smaller than 100 nm. TEM analysis, however, has previously required manual particle counting and analysis, limiting the amount of data that could be collected to several dozen particles per day.

Stainless steel medical device sample prepared by PFIB milling.
Stainless steel medical device sample generated with PFIB milling, with total dimensions of 55 x 70 μm. The red box indicates the amount of area that could be prepared in the same amount of time with a typical gallium FIB.

Thermo Fisher Scientific provides a range of electron microscopy solutions that make metal analysis not only more informative but also far more rapid. Thanks to our unique automation capabilities, a thorough overview of the elemental and structural composition of hundreds, if not thousands, of precipitates is possible in a manner of hours, as compared to the few dozen that would be found in a day of manual analysis. Not only is statistical information on the bulk available, but individual precipitates can also be seen with high detail, providing a multi-scale overview of the metal.

Our robust, automated instruments can perform a variety of critical tasks including:

Zirconium alloy sample, analyzed with electron backscatter diffraction to produce a 3D microstructural reconstruction.
3D microstructural information provided by electron backscatter diffraction (EBSD) of a zirconium alloy sample reconstructed from 400 slices. Sample courtesy of the University of Manchester.

Resources


SEM images

XPS images

TEM images
Precipitates containing copper (green) and zirconium (red) in a friction-stir-welded Al-Cu-Li alloy were analyzed with a Talos F200X (S)TEM and Automated Particle Workflow (APW). The three regions represent the base metal (left), the heat-affected zone (middle), and the stirred zone (right).
Precipitates of niobium carbide in a high-strength, low-alloy steel were analyzed with a Talos F200X (S)TEM and Automated Particle Workflow (APW). The two regions represent different locations on the same coil, where the steel with finer precipitates (average 9 nm, left) yielded a higher strength than the steel with larger precipitates (average 12 nm, right).

SEM videos

Phenom ParticleX Steel Desktop SEM inclusion analysis short demonstration.

ParticleX Steel Desktop SEM - Workflow introduction.

Axia ChemiSEM provides high-quality imaging of steel samples to aid in the production of high-value steels. 

Axia ChemiSEM identifies composition on-the-fly


TEM videos

Aluminum 2099 alloy lamella characterization of Cu and Zr precipitates by APW

Nickel superalloy sample characterizingr titanium nitride nano particles by APW.

HSLA steel lamella characterization of Nb precipitates by Automated Particle Workflow (APW).

3D EDS TEM tomography of precipitates in an AlMgSi alloy.

High resolution APW showing complex features in additively manufactured stainless steel.

Maps and Avizo2D recordings (left and right) running side by side during an acquisition.

Webinars

Webinar: Nanoparticle Characterization by Automated TEM.

Webinar: Correlative Microscopy for Aerospace and Defense Industries

TEM Articles

Nanoscale origins of the oriented precipitation of Ti3Al in Ti\\Al systems

Hao Wu, Guohua Fan, Lin Geng, Xiping Cui, Meng Huang

DOI link


Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel

Yu Sun, Rainer J. Hebert, Mark Aindow

DOI link


Coherency strains of H-phase precipitates and their influence on functional properties of nickel-titanium-hafnium shape memory alloys

Behnam Amin-Ahmadi,⁎, Joseph G. Pauza, Ali Shamimi, Tom W. Duerig, Ronald D. Noebe, Aaron P. Stebner

DOI link


Effect of laser scan length on the microstructure of additively manufactured 17-4PH stainless steel thin-walled parts

Yu Sun, Rainer J. Hebert, Mark Aindow

DOI link


Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting

Yu Sun, Rainer J. Hebert, Mark Aindow

DOI link


FIB-SEM Articles

Joachim Mayer, RWTH Aachen

“Formation of White Etching Areas in SAE 52100 Bearing Steel under Rolling Contact Fatigue − Influence of Diffusible Hydrogen”
M. Oezel, A. Schwedt, T. Janitzky, R. Kelley, C.Bouchet-Marquis, L. Pullan, C. Broeckmann, J. Mayer
Wear, Volumes 414-415, November 2018, Pages 352-365.

DOI link


Philip Withers, University of Manchester

“Industrial Gear Oils: Tribological Performance and Subsurface Changes”
Aduragbemi Adebogun, Robert Hudson, Angela Breakspear, Chris Warrens, Ali Gholinia, Allan Matthews, Philip Withers Tribology Letters (2018) 66:65.

DOI link


Jun Tan, Shenyang National Laboratory for Materials Science

“Insight into atmospheric pitting corrosion of carbon steel via a dual-beam FIB/SEM system associated with high-resolution TEM”
Corrosion Science 152 (2019) 226–233.

DOI link


Yu-Lung Chiu, University of Birmingham

“Micro-tensile strength of a welded turbine disc superalloy”
K.M. Oluwasegun, C.Cooper, Y.L.Chiu, I.P.Jones, H.Y.Li, G.Baxter
Materials Science & Engineering A 596 (2014) 229–235.

DOI link


Chris Pistorius, Carnegie Mellon University

“Application of Plasma FIB to Analyze a Single Oxide Inclusion in Steel”
D. Kumar, N.T. Nuhfer, M.E. Ferreira and P.C. Pistorius
Metallurgical and Materials Transactions B, Volume 50B, June 2019, Pages 1124-1127.

DOI link



SEM images

XPS images

TEM images
Precipitates containing copper (green) and zirconium (red) in a friction-stir-welded Al-Cu-Li alloy were analyzed with a Talos F200X (S)TEM and Automated Particle Workflow (APW). The three regions represent the base metal (left), the heat-affected zone (middle), and the stirred zone (right).
Precipitates of niobium carbide in a high-strength, low-alloy steel were analyzed with a Talos F200X (S)TEM and Automated Particle Workflow (APW). The two regions represent different locations on the same coil, where the steel with finer precipitates (average 9 nm, left) yielded a higher strength than the steel with larger precipitates (average 12 nm, right).

SEM videos

Phenom ParticleX Steel Desktop SEM inclusion analysis short demonstration.

ParticleX Steel Desktop SEM - Workflow introduction.

Axia ChemiSEM provides high-quality imaging of steel samples to aid in the production of high-value steels. 

Axia ChemiSEM identifies composition on-the-fly


TEM videos

Aluminum 2099 alloy lamella characterization of Cu and Zr precipitates by APW

Nickel superalloy sample characterizingr titanium nitride nano particles by APW.

HSLA steel lamella characterization of Nb precipitates by Automated Particle Workflow (APW).

3D EDS TEM tomography of precipitates in an AlMgSi alloy.

High resolution APW showing complex features in additively manufactured stainless steel.

Maps and Avizo2D recordings (left and right) running side by side during an acquisition.

Webinars

Webinar: Nanoparticle Characterization by Automated TEM.

Webinar: Correlative Microscopy for Aerospace and Defense Industries

TEM Articles

Nanoscale origins of the oriented precipitation of Ti3Al in Ti\\Al systems

Hao Wu, Guohua Fan, Lin Geng, Xiping Cui, Meng Huang

DOI link


Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel

Yu Sun, Rainer J. Hebert, Mark Aindow

DOI link


Coherency strains of H-phase precipitates and their influence on functional properties of nickel-titanium-hafnium shape memory alloys

Behnam Amin-Ahmadi,⁎, Joseph G. Pauza, Ali Shamimi, Tom W. Duerig, Ronald D. Noebe, Aaron P. Stebner

DOI link


Effect of laser scan length on the microstructure of additively manufactured 17-4PH stainless steel thin-walled parts

Yu Sun, Rainer J. Hebert, Mark Aindow

DOI link


Non-metallic inclusions in 17-4PH stainless steel parts produced by selective laser melting

Yu Sun, Rainer J. Hebert, Mark Aindow

DOI link


FIB-SEM Articles

Joachim Mayer, RWTH Aachen

“Formation of White Etching Areas in SAE 52100 Bearing Steel under Rolling Contact Fatigue − Influence of Diffusible Hydrogen”
M. Oezel, A. Schwedt, T. Janitzky, R. Kelley, C.Bouchet-Marquis, L. Pullan, C. Broeckmann, J. Mayer
Wear, Volumes 414-415, November 2018, Pages 352-365.

DOI link


Philip Withers, University of Manchester

“Industrial Gear Oils: Tribological Performance and Subsurface Changes”
Aduragbemi Adebogun, Robert Hudson, Angela Breakspear, Chris Warrens, Ali Gholinia, Allan Matthews, Philip Withers Tribology Letters (2018) 66:65.

DOI link


Jun Tan, Shenyang National Laboratory for Materials Science

“Insight into atmospheric pitting corrosion of carbon steel via a dual-beam FIB/SEM system associated with high-resolution TEM”
Corrosion Science 152 (2019) 226–233.

DOI link


Yu-Lung Chiu, University of Birmingham

“Micro-tensile strength of a welded turbine disc superalloy”
K.M. Oluwasegun, C.Cooper, Y.L.Chiu, I.P.Jones, H.Y.Li, G.Baxter
Materials Science & Engineering A 596 (2014) 229–235.

DOI link


Chris Pistorius, Carnegie Mellon University

“Application of Plasma FIB to Analyze a Single Oxide Inclusion in Steel”
D. Kumar, N.T. Nuhfer, M.E. Ferreira and P.C. Pistorius
Metallurgical and Materials Transactions B, Volume 50B, June 2019, Pages 1124-1127.

DOI link


Applications

Process Control_Thumb_274x180_144DPI

Controle de processo
 

A indústria moderna exige alta produtividade com qualidade superior, um equilíbrio mantido por meio de um controle de processo robusto. As ferramentas SEM e TEM com software de automação dedicado proporcionam informações rápidas e em várias escalas para monitoramento e aprimoramento de processos.

 

Quality Control_Thumb_274x180_144DPI

Controle de qualidade
 

O controle de qualidade e a garantia de qualidade são essenciais na indústria moderna. Oferecemos uma gama de ferramentas de microscopia eletrônica e espectroscopia para análises multidimensionais e multimodais de defeitos, permitindo que você tome decisões confiáveis e informadas para controle e melhoria de processos.

 

Fundamental Materials Research_R&D_Thumb_274x180_144DPI

Pesquisa de materiais fundamentais

Novos materiais são investigados em escalas cada vez menores para o máximo controle de suas propriedades físicas e químicas. A microscopia eletrônica fornece aos pesquisadores percepções importantes sobre uma ampla variedade de características materiais em escala micro a nano.

 

Grãos minerais de alumínio encontrados com SEM durante o teste de limpeza de peças

Limpeza
 

Mais do que nunca, a fabricação moderna necessita de componentes confiáveis e de qualidade. Com a microscopia eletrônica de varredura (SEM), a análise de limpeza de peças pode ser feita internamente, fornecendo uma ampla variedade de dados analíticos e encurtando o ciclo de produção.


Style Sheet for Komodo Tabs

Techniques

Preparação de amostra (S)TEM

Os microscópios DualBeam permitem a preparação de amostras ultrafinas e de alta qualidade para análise de (S)TEM. Graças à automação avançada, os usuários com qualquer nível de experiência podem obter resultados de nível especializado para uma ampla gama de materiais.

Saiba mais ›

Caracterização de materiais 3D

O desenvolvimento de materiais muitas vezes requer caracterização 3D em várias escalas. Os instrumentos DualBeam permitem a secção em série de grandes volumes e a subsequente geração de imagens SEM nanométricas, que podem ser processadas em reconstruções 3D de alta qualidade da amostra.

Saiba mais ›

Espectroscopia por energia dispersiva

A espectroscopia por energia dispersiva (EDS) coleta informações elementares detalhadas juntamente com imagens de microscopia eletrônica, fornecendo contexto de composição crítico para observações EM. Com a EDS, a composição química pode ser determinada a partir de varreduras de superfície rápidas e holísticas que chegam até a átomos individuais.

Saiba mais ›

Análise elementar EDS

A EDS proporciona informações de composição vitais para observações em microscópio eletrônico. Principalmente, nossos exclusivos sistemas detectores Super-X e Dual-X adicionam opções para maior produtividade e/ou sensibilidade, permitindo otimizar a aquisição de dados para atender às prioridades de pesquisa.

Saiba mais ›

Tomografia EDS 3D

A pesquisa de materiais modernos depende cada vez mais da análise nanométrica em três dimensões. A caracterização 3D, incluindo dados de composição para contexto químico e estrutural completos, é possível com a EM 3D e a espectroscopia de raios X por energia dispersiva.

Saiba mais ›

ColorSEM

Usando a EDS (espectroscopia de raios X por energia dispersiva) com quantificação ao vivo, a tecnologia ColorSEM transforma as imagens SEM em uma técnica colorida. Agora, qualquer usuário pode adquirir dados elementares continuamente para obter informações mais completas do que nunca.

Saiba mais ›

Corte transversal

O corte transversal fornece dados adicionais ao revelar informações de subsuperfície. Os instrumentos DualBeam apresentam excelentes colunas de feixe de íons focalizados para corte transversal de alta qualidade. A automação permite realizar o processamento autônomo de amostras com alta produtividade.

Saiba mais ›

Experimentação in situ

A observação direta e em tempo real de alterações microestruturais com a microscopia eletrônica é necessária para entender os princípios subjacentes de processos dinâmicos, como recristalização, crescimento de grãos e transformação de fases durante o aquecimento, o resfriamento e a umidificação.

Saiba mais ›

Análise de partículas

A análise de partículas tem uma função vital na pesquisa de nanomateriais e no controle de qualidade. A resolução nanométrica e a formação de imagens excelentes da microscopia eletrônica podem ser combinadas com software especializado proporcionando uma rápida caracterização de pós e partículas.

Saiba mais ›

Espectroscopia fotoeletrônica de raios X

A espectroscopia fotoeletrônica de raios X (XPS) permite analisar a superfície, fornecendo a composição elementar, bem como o estado químico e eletrônico dos 10 nm superiores de um material. Com a criação de perfil de profundidade, a análise XPS se estende a informações de composição de camadas.

Saiba mais ›

Fluxo de trabalho de partículas automatizado

O fluxo de trabalho de nanopartículas automatizado (APW) consiste em um fluxo de trabalho de microscópio eletrônico de transmissão para análise de nanopartículas, oferecendo imagens de grande área e alta resolução e aquisição de dados nanométricos em um processamento dinâmico.

Saiba mais ›

Preparação de amostra (S)TEM

Os microscópios DualBeam permitem a preparação de amostras ultrafinas e de alta qualidade para análise de (S)TEM. Graças à automação avançada, os usuários com qualquer nível de experiência podem obter resultados de nível especializado para uma ampla gama de materiais.

Saiba mais ›

Caracterização de materiais 3D

O desenvolvimento de materiais muitas vezes requer caracterização 3D em várias escalas. Os instrumentos DualBeam permitem a secção em série de grandes volumes e a subsequente geração de imagens SEM nanométricas, que podem ser processadas em reconstruções 3D de alta qualidade da amostra.

Saiba mais ›

Espectroscopia por energia dispersiva

A espectroscopia por energia dispersiva (EDS) coleta informações elementares detalhadas juntamente com imagens de microscopia eletrônica, fornecendo contexto de composição crítico para observações EM. Com a EDS, a composição química pode ser determinada a partir de varreduras de superfície rápidas e holísticas que chegam até a átomos individuais.

Saiba mais ›

Análise elementar EDS

A EDS proporciona informações de composição vitais para observações em microscópio eletrônico. Principalmente, nossos exclusivos sistemas detectores Super-X e Dual-X adicionam opções para maior produtividade e/ou sensibilidade, permitindo otimizar a aquisição de dados para atender às prioridades de pesquisa.

Saiba mais ›

Tomografia EDS 3D

A pesquisa de materiais modernos depende cada vez mais da análise nanométrica em três dimensões. A caracterização 3D, incluindo dados de composição para contexto químico e estrutural completos, é possível com a EM 3D e a espectroscopia de raios X por energia dispersiva.

Saiba mais ›

ColorSEM

Usando a EDS (espectroscopia de raios X por energia dispersiva) com quantificação ao vivo, a tecnologia ColorSEM transforma as imagens SEM em uma técnica colorida. Agora, qualquer usuário pode adquirir dados elementares continuamente para obter informações mais completas do que nunca.

Saiba mais ›

Corte transversal

O corte transversal fornece dados adicionais ao revelar informações de subsuperfície. Os instrumentos DualBeam apresentam excelentes colunas de feixe de íons focalizados para corte transversal de alta qualidade. A automação permite realizar o processamento autônomo de amostras com alta produtividade.

Saiba mais ›

Experimentação in situ

A observação direta e em tempo real de alterações microestruturais com a microscopia eletrônica é necessária para entender os princípios subjacentes de processos dinâmicos, como recristalização, crescimento de grãos e transformação de fases durante o aquecimento, o resfriamento e a umidificação.

Saiba mais ›

Análise de partículas

A análise de partículas tem uma função vital na pesquisa de nanomateriais e no controle de qualidade. A resolução nanométrica e a formação de imagens excelentes da microscopia eletrônica podem ser combinadas com software especializado proporcionando uma rápida caracterização de pós e partículas.

Saiba mais ›

Espectroscopia fotoeletrônica de raios X

A espectroscopia fotoeletrônica de raios X (XPS) permite analisar a superfície, fornecendo a composição elementar, bem como o estado químico e eletrônico dos 10 nm superiores de um material. Com a criação de perfil de profundidade, a análise XPS se estende a informações de composição de camadas.

Saiba mais ›

Fluxo de trabalho de partículas automatizado

O fluxo de trabalho de nanopartículas automatizado (APW) consiste em um fluxo de trabalho de microscópio eletrônico de transmissão para análise de nanopartículas, oferecendo imagens de grande área e alta resolução e aquisição de dados nanométricos em um processamento dinâmico.

Saiba mais ›

Products

Folha de estilo para cartões de instrumentos original

Phenom ParticleX Steel Desktop SEM

  • SEM e EDS integrados
  • Fácil de usar
  • Inclusões submicrométricas

Talos F200S TEM

  • Dados precisos de composição química
  • Imagens de alto desempenho e análise de composição precisa para microscopia dinâmica
  • Apresenta o software Velox para aquisição e análise rápidas e fáceis de dados multimodais

Talos F200X TEM

  • Alta resolução/produtividade na geração de imagens STEM e na análise química
  • Adicione suportes de amostra in situ para experimentos dinâmicos
  • Apresenta o software Velox para aquisição e análise rápidas e fáceis de dados multimodais

Talos F200C TEM

  • A análise flexível da EDS revela informações químicas
  • Formação de imagens de TEM e STEM de alto contraste e alta qualidade
  • A câmera CMOS Ceta de 16 Mpixel fornece um campo de visão amplo e alta velocidade de leitura

Talos F200i TEM

  • Imagens S/TEM de alta qualidade e EDS precisa
  • Disponível com tecnologia de EDS dupla
  • Melhores recursos completos in situ
  • Imagem de campo de visão grande em alta velocidade

Helios 5 DualBeam

  • Preparação de amostra TEM ultrafina, totalmente automatizada e de alta qualidade
  • Alta produtividade, subsuperfície de alta resolução e caracterização 3D
  • Recursos rápidos de nanoprototipagem

Helios 5 PFIB DualBeam

  • Preparação de amostra STEM e TEM sem gálio
  • Subsuperfície multimodal e informações 3D
  • Coluna FIB de plasma de xênon de 2,5 μA de próxima geração

Scios 2 DualBeam

  • Compatibilidade total com amostras magnéticas e não condutoras
  • Subsuperfície de alto rendimento e caracterização 3D
  • Recursos avançados de facilidade de uso e automação

Apreo 2 SEM

  • SEM de alto desempenho para resolução geral nanométrica ou subnanométrica
  • Detector retroespelhado T1 na coluna para contraste de materiais sensíveis e com taxa de TV
  • Excelente desempenho em longas distâncias de trabalho (10 mm)

Phenom Pharos Desktop SEM

  • Fonte FEG com faixa de tensão de aceleração de 2 kV a 15 kV
  • Resolução de <2,5 nm (SE) e <4,0 nm (BSE) a 15 kV; ampliação de até 1.000.000 vezes
  • Detector EDS e SE opcional totalmente integrado

Phenom ParticleX TC Desktop SEM

  • Desktop SEM versátil com software de automação para limpeza técnica
  • Resolução <10 nm; ampliação de até 200.000 vezes
  • Detector SE opcional

Nexsa XPS

  • Módulo de inclinação para medições ARXPS
  • Fonte de íons de modo duplo para recursos de perfil de profundidade expandida
  • Análise de isolantes

K-Alpha XPS

  • Espectroscopia de área selecionável
  • Monocromador microfocalizado
  • Espectroscopia de estado químico de alta resolução

ESCALAB Xi+ XPS

  • Espectroscopia de alta sensibilidade
  • XPS com raios X não monocromáticos
  • Analisador de energia hemisférica de 180 graus

Software Avizo

  • Compatível com vários dados/várias visualizações, vários canais, série temporal, dados muito grandes
  • Registro automático avançado em vários modos 2D/3D
  • Algoritmos de redução de artefatos

Athena Software
Imaging Data Management

  • Ensure traceability of images, data, metadata and experimental workflows
  • Simplify your imaging workflow​
  • Improve collaboration
  • Secure and manage data access​

AutoTEM 5

  • Preparação de amostras S/TEM totalmente automatizada in situ
  • Compatibilidade com geometria de cima para baixo, plana e invertida
  • Fluxo de trabalho altamente configurável
  • Interface de usuário intuitiva e fácil de usar

Software Maps

  • Adquira imagens de alta resolução em áreas grandes
  • Encontre regiões de interesse facilmente
  • Automatize o processo de aquisição de imagens
  • Correlacione dados de diferentes fontes

Reconstrução 3D

  • Interface de usuário intuitiva, empregabilidade máxima
  • Interface de usuário intuitiva e totalmente automatizada
  • Com base na tecnologia de "forma a partir do sombreamento", não é necessário inclinar o estágio

Suporte para amostras metalúrgicas

  • Projetado para suportar amostras montadas em resina
  • Solução preferida para metalurgia e ao trabalhar com insertos
  • Tamanho da amostra de até 32 mm de diâmetro e 30 mm de altura

μHeater

  • Solução de aquecimento ultrarrápida para imagens de alta resolução in situ
  • Totalmente integrado
  • Temperaturas de até 1200 °C

Suporte de amostra de tensão

  • Determine a qualidade do lote
  • Determine a consistência da fabricação
  • Auxilie o processo de desenvolvimento

Velox

  • Um painel experimentos no lado esquerdo da janela de processamento.
  • Mapeamento quantitativo ao vivo
  • Interface de layout interativa do detector para configuração e controle de experimentos reproduzíveis

Style Sheet to change H2 style to p with em-h2-header class

Contact us

Folha de estilo para Rodapé de suporte e serviço
Folha de estilo para Fontes
Folha de estilo para Cartões

Serviços de microscopia eletrônica para
a ciência dos materiais

Para garantir o desempenho ideal do sistema, fornecemos acesso a uma rede de especialistas em serviços de campo, suporte técnico e peças de reposição certificadas.