Search Thermo Fisher Scientific
Search Thermo Fisher Scientific
触媒はすべての製造製品で 80% 以上の処理に関与しており、現代産業に必要不可欠なものとなっています。特に不均一系ナノ粒子触媒は、水素燃料の生産など環境にやさしいとされる多くの最新プロセスにとって重要な触媒であり、自動車の触媒コンバーターで広く使用されています。このように新開発された触媒は生産速度を速め、それに必要な反応温度を低温化できるため、処理や生産に必要なエネルギーを削減することが出来ます。
触媒の性能向上には、ナノ粒子の形態、分布、サイズ、化学組成に関する正しい情報を得ることが不可欠です。走査透過電子顕微鏡(S/TEM)とエネルギー分散型X線分光法(EDS)の組み合わせは、こうした情報の直接観察と定量解析の実現に重要な研究ツールとなることが実証されています。また高性能な走査電子顕微鏡(SEM)は、ビームのエネルギーと電流を抑制した条件下での観察が可能なツールであり、電子ビームへの感受性の高い触媒試料においても試料を損なうことなく優れた画像撮影が可能です。
サーモフィッシャーサイエンティフィックは、触媒ナノ粒子の解析に最適な装置ラインナップを揃えております。当社はさらに、ワークフローの自動化を可能にする一連のソフトウェアも提供しており、高分解能かつ広領域のナノ粒子データを生成して、触媒の全体的な概観を把握することもできます。
光触媒反応プロセス(C3N4(Co)-Pt)に使用された、電子線に敏感な材料の高分解能EDSマップ。プラチナおよびコバルトのナノ粒子挙動の相乗効果を用いて、触媒効率を改善する触媒。データ提供:Sheng Chun Yang教授、西安交通大学、中国。
このWebセミナーでは、TEMを用いた高度な触媒解析方法、触媒分野におけるSpectra 200 S/TEMなどのツールの利用状況、Haldor TopsøeがSpectra 200 S/TEMを選択した理由を解説しています。
このWebセミナーでは、触媒反応における材料の重要性、触媒合成における課題、原子レベルでの触媒解析について解説しています。
このWebセミナーでは、TEMを用いた高度な触媒解析方法、触媒分野におけるSpectra 200 S/TEMなどのツールの利用状況、Haldor TopsøeがSpectra 200 S/TEMを選択した理由を解説しています。
このWebセミナーでは、触媒反応における材料の重要性、触媒合成における課題、原子レベルでの触媒解析について解説しています。
近年の産業では、確かなプロセス制御によって維持される優れた品質とスループットの両立が求められています。専用の自動化ソフトウェアを搭載したSEMおよびTEMツールは、プロセスモニタリングおよびプロセス改善のための迅速なマルチスケール情報を提供します。
近年の産業では、品質管理と品質保証が不可欠です。私たちは、欠陥をマルチスケールかつ多モードで分析可能なEMおよび分光ツールを提供しており、これらにより得られる信頼性の高い十分な情報によりプロセス制御および改善のための決定が可能となります。
新材料開発では、その物理的および化学的特性を最大化するために、より小さなスケールでの研究がなされています。電子顕微鏡は、マイクロスケールからナノスケールのさまざまな材料特性について重要な情報を研究者に提供します。
(S)TEM試料作製
DualBeam顕微鏡では、(S)TEM分析用の高品質な極薄膜試料の作製が可能です。高度な自動化機能により、ユーザーの経験レベルにかかわらず、あらゆる材料で熟練者と同等の結果を得ることができます。
3D材料解析
多くの場合、材料の開発にはマルチスケールの3D解析が必要です。DualBeam装置により、大量の連続スライスと、その後のナノメートルスケールでのSEMイメージングが可能となり、試料の高品質な3D再構成処理を行うことができます。
EDS元素分析
EDSは、電子顕微鏡観察に不可欠な組成情報を提供します。特に、当社独自のSuper-XおよびDual-X検出器システムはSTEM-EDS分析の速度や感度を向上させるため、材料の研究に必要な元素分布情報が入手しやすくなります。
3D EDSトモグラフィー
現代の材料研究は、3次元のナノスケール分析にますます依存しています。3Dの電子顕微鏡解析およびエネルギー分散型X線分光法を使用することにより、全元素の組成情報を含む微細構造の3D解析が可能になります。
エネルギー分散分光法
エネルギー分散分光法(EDS)を使用することにより、電子顕微鏡の画像情報に加えて、詳細な元素情報も収集できます。電子顕微鏡観察時に重要な組成分布を得ることができます。EDSにより、全容を示す低倍率のスキャンから、原子分解能マッピングに至るまで、試料の元素組成情報が短時間で得られます。
EDSによる原子分解能元素マッピング
原子分解能EDSでは、個々の原子のレベルで元素を識別できるため、優れた高分解能の組成情報が得られます。高分解能S/TEMイメージングとの組み合わせにより、試料中の原子構成を正確に観察できます。
ChemiSEM
ChemiSEM技術は、ライブEDS(エネルギー分散型X線分光法)とライブ定量を使用して、SEM画像をカラー化します。どのユーザーでも、組成のデータを継続的に取得して、これまで以上に詳細な情報を得ることができます。
HRSTEM、HRTEMのイメージング
透過電子顕微鏡は、ナノ粒子やナノ材料の構造解析をするための非常に重要な技術です。高分解能STEMおよびTEMにより、化学組成の情報とともに原子分解能データが得られます。
微分位相コントラストイメージング
近年のエレクトロニクス研究は、電気的および磁気的特性のナノスケール分析が重要です。微分位相コントラストSTEM(DPC-STEM)により、試料中の磁場の強度と分布を可視化し、磁区構造を表示することができます。
高温試料のイメージング
実際の条件下で材料を研究するには、高温の試料を観察する必要もよくあります。高温下で材料が再結晶化、溶解、変形、反応する際の挙動は、走査電子顕微鏡またはDualBeamシステムを用いてin situで研究できます。
環境制御型SEM(ESEM)
環境制御型SEMにより、材料を本来の状態で観察できます。これは、ウェットな、汚れている、反応性のある、ガス放出があるなどの真空に適さない試料を扱う研究者に最適です。
電子エネルギー損失分光法
高分解能EELSは、材料科学研究の幅広い分析アプリケーションに対応します。EELSを利用することで速くて高S/N比の元素マッピング、酸化状態の確認や表面フォノンの解析などが可能です。
断面加工
断面加工により、表面下の情報が明らかになり、さらなる知見が得られます。DualBeam装置は、高品質の断面加工を実現する、優れた集束イオンビームカラムを備えています。自動化機能により、無人でのハイスループットな試料処理が可能になります。
In situ試験
加熱、冷却、液中での再結晶化、グレイン成長、相変態などの動的プロセスの基本原理を理解するには、電子顕微鏡を用いて、微細構造変化を直接かつリアルタイムで観察する必要があります。
粒子解析
粒子解析は、ナノマテリアルの研究および品質管理において重要な役割を果たします。電子顕微鏡のナノスケールの分解能と優れたイメージングは、粉末や粒子の迅速な解析のための専用ソフトウェアと組み合わせて使用することが出来ます。
SIMS
集束イオンビーム走査電子顕微鏡(FIB-SEM)用の飛行時間型二次イオン質量分析(TOF-SIMS)検出器を用いることにより、周期表のすべての元素の低濃度での高分解能分析が可能になります。
マルチスケール分析
新しい材料の場合、その構造全体を把握しながら、高い分解能で分析する必要があります。マルチスケール分析では、X線マイクロCT、DualBeam、レーザーPFIB、SEM、TEMなどのさまざまなイメージング技術や方法の相関が可能です。
自動NanoParticleワークフロー(APW)は、ナノ粒子分析用の透過型電子顕微鏡ワークフローです。広領域のナノスケール高分解能イメージングとデータ取得、およびその場での処理を行えます。
(S)TEM試料作製
DualBeam顕微鏡では、(S)TEM分析用の高品質な極薄膜試料の作製が可能です。高度な自動化機能により、ユーザーの経験レベルにかかわらず、あらゆる材料で熟練者と同等の結果を得ることができます。
3D材料解析
多くの場合、材料の開発にはマルチスケールの3D解析が必要です。DualBeam装置により、大量の連続スライスと、その後のナノメートルスケールでのSEMイメージングが可能となり、試料の高品質な3D再構成処理を行うことができます。
EDS元素分析
EDSは、電子顕微鏡観察に不可欠な組成情報を提供します。特に、当社独自のSuper-XおよびDual-X検出器システムはSTEM-EDS分析の速度や感度を向上させるため、材料の研究に必要な元素分布情報が入手しやすくなります。
3D EDSトモグラフィー
現代の材料研究は、3次元のナノスケール分析にますます依存しています。3Dの電子顕微鏡解析およびエネルギー分散型X線分光法を使用することにより、全元素の組成情報を含む微細構造の3D解析が可能になります。
エネルギー分散分光法
エネルギー分散分光法(EDS)を使用することにより、電子顕微鏡の画像情報に加えて、詳細な元素情報も収集できます。電子顕微鏡観察時に重要な組成分布を得ることができます。EDSにより、全容を示す低倍率のスキャンから、原子分解能マッピングに至るまで、試料の元素組成情報が短時間で得られます。
EDSによる原子分解能元素マッピング
原子分解能EDSでは、個々の原子のレベルで元素を識別できるため、優れた高分解能の組成情報が得られます。高分解能S/TEMイメージングとの組み合わせにより、試料中の原子構成を正確に観察できます。
ChemiSEM
ChemiSEM技術は、ライブEDS(エネルギー分散型X線分光法)とライブ定量を使用して、SEM画像をカラー化します。どのユーザーでも、組成のデータを継続的に取得して、これまで以上に詳細な情報を得ることができます。
HRSTEM、HRTEMのイメージング
透過電子顕微鏡は、ナノ粒子やナノ材料の構造解析をするための非常に重要な技術です。高分解能STEMおよびTEMにより、化学組成の情報とともに原子分解能データが得られます。
微分位相コントラストイメージング
近年のエレクトロニクス研究は、電気的および磁気的特性のナノスケール分析が重要です。微分位相コントラストSTEM(DPC-STEM)により、試料中の磁場の強度と分布を可視化し、磁区構造を表示することができます。
高温試料のイメージング
実際の条件下で材料を研究するには、高温の試料を観察する必要もよくあります。高温下で材料が再結晶化、溶解、変形、反応する際の挙動は、走査電子顕微鏡またはDualBeamシステムを用いてin situで研究できます。
環境制御型SEM(ESEM)
環境制御型SEMにより、材料を本来の状態で観察できます。これは、ウェットな、汚れている、反応性のある、ガス放出があるなどの真空に適さない試料を扱う研究者に最適です。
電子エネルギー損失分光法
高分解能EELSは、材料科学研究の幅広い分析アプリケーションに対応します。EELSを利用することで速くて高S/N比の元素マッピング、酸化状態の確認や表面フォノンの解析などが可能です。
断面加工
断面加工により、表面下の情報が明らかになり、さらなる知見が得られます。DualBeam装置は、高品質の断面加工を実現する、優れた集束イオンビームカラムを備えています。自動化機能により、無人でのハイスループットな試料処理が可能になります。
In situ試験
加熱、冷却、液中での再結晶化、グレイン成長、相変態などの動的プロセスの基本原理を理解するには、電子顕微鏡を用いて、微細構造変化を直接かつリアルタイムで観察する必要があります。
粒子解析
粒子解析は、ナノマテリアルの研究および品質管理において重要な役割を果たします。電子顕微鏡のナノスケールの分解能と優れたイメージングは、粉末や粒子の迅速な解析のための専用ソフトウェアと組み合わせて使用することが出来ます。
SIMS
集束イオンビーム走査電子顕微鏡(FIB-SEM)用の飛行時間型二次イオン質量分析(TOF-SIMS)検出器を用いることにより、周期表のすべての元素の低濃度での高分解能分析が可能になります。
マルチスケール分析
新しい材料の場合、その構造全体を把握しながら、高い分解能で分析する必要があります。マルチスケール分析では、X線マイクロCT、DualBeam、レーザーPFIB、SEM、TEMなどのさまざまなイメージング技術や方法の相関が可能です。
自動NanoParticleワークフロー(APW)は、ナノ粒子分析用の透過型電子顕微鏡ワークフローです。広領域のナノスケール高分解能イメージングとデータ取得、およびその場での処理を行えます。
最適なシステム性能をお届けするため、当社は国際的なネットワークで、分野ごとのサービスエキスパート、テクニカルサポート、正規交換部品などを提供しています。